Category: IPD News

Annual Report 2022


Protein design reached two major milestones this year: Our Institute succeeded in producing its first fully-approved medicine, and our spinout companies have together raised over one billion dollars in capital. 

We are pleased to present this overview of the progress made at the Institute for Protein Design during the past year.

2022 Annual Report

Celebrating our 10-year Anniversary


This week we celebrated the 10-year anniversary of the Institute for Protein Design. Current members, advisors, supporters, and old friends all came together on campus to share memories and forge new friendships. It was a night to remember.

A lot has changed in the past decade. At our founding, the concept of protein design was largely unproven. We believed that a new world of useful proteins could one day be built, but we could not imagine the breadth of projects and successes that would followed. Many of our original team members have moved on to other places, and we have welcomed hundreds of new colleagues into the fold. But one thing has always remained unchanged: our commitment to excellence in research.

It has been a thrilling 10 years, full of discoveries and breakthroughs. We have made great progress in our mission, including by launching our first approved medicine, and we look forward to continuing our work for many years to come. Thank you to all of our supporters, old and new, for helping us make this work possible.

Debuting a new sculpture

At the party, we debuted a new sculpture of the protein Top7 made by former Baker lab member and artist Mike Tyka and his collaborator Jeanne Ferraro.

Top7 was the first protein invented on a computer with a novel amino acid sequence specifying a novel fold. Its advent marked the beginning of de novo protein design. For the first time, vast regions of the protein universe not sampled by evolution could be explored.

The sculpture depicts Top7 in two ways: The twisting path of the protein’s inner backbone can be seen in brass, and a volume corresponding to the outer surface of the protein is shown in colored glass. When viewed at just the right angle, the glass partition allows the two forms to become superimposed. This combined view illustrates the beauty of the two together as sequence and fold unite.

The name Top7 refers to the fact that this protein was the seventh in a series of topologies examined as part of a larger design campaign.

As the creators of Top7 put it in their groundbreaking paper: 

“The design of Top7 shows that globular protein folds not yet observed in nature not only are physically possible but can be extremely stable. This extends the earlier observation that helical coiled coil geometries not found in nature can be generated by computational protein design. The protein therapeutics and molecular machines of the future should thus not be limited to the structures sampled by the biological evolutionary process. The methods used to design Top7 are, in principle, applicable to any globular protein structure and open the door to the exploration and use of a vast new world of protein structures and architectures.”

Posters from the event

AWS gift supports protein structure prediction and design

Amazon Web Services (AWS), a leading cloud computing platform, is donating server time to the Institute for Protein Design to accelerate research in protein structure prediction and design. Computing credits valued at over $1M will be used to train optimized versions of RoseTTAFold for higher accuracy. The research will also support the ongoing development of novel antivirals, vaccines, and diagnostics, including for COVID-19. Improved versions of RoseTTAFold that result will be freely available to the academic research community through the RosettaCommons. All predicted structures for natural proteins will be made freely available via ModelArchive or another public database.

“The use of machine learning in protein science is one of today’s most promising research frontiers. With this generous gift, AWS is helping our scientists build tools and make discoveries that could transform medicine and more. We are grateful for their support,” said Lance Stewart, Chief Strategy and Operations Officer at the Institute for Protein Design.



Anindya Roy wins Go-To-Market Award for drug development

The Washington Entrepreneurial Research Evaluation and Commercialization Hub (WE-REACH) is pleased to announce a product concept award for Dr. Anindya Roy and his team at the UW Medicine Institute for Protein Design, including Drs. Jake Kraft and Hua Bai. They are developing a novel binder protein in an aerosolized delivery system to treat idiopathic pulmonary fibrosis (IPF). IPF is a chronic respiratory disease with no cure that produces scarring in lungs leading to breathlessness, fatigue, and heart failure. The search for an effective IPF treatment is a top NIH priority.

WE-REACH’s support will enable Roy and his team to produce a stable nebulized inhalable product amenable for human administration that will neutralize a key mediator called αvβ6. Early toxicology studies in larger rodents will provide safety information necessary for regulatory filing. Roy’s team is combining WE-REACH’s funding with support from the Washington Research Foundation (WRF) to test the safety and efficacy of the protein binder in an aerosolized dosage form. The team plans to leverage this support to spin out from the University of Washington and commercialize their product so that they can improve the lives of those suffering from IPF.

“We are pleased to journey with this team of scientists to translate technical innovations in protein binder design into a viable product concept for IPF,” said Dr. Rodney Ho, executive director of WE-REACH. “Beyond funding, we believe that it is critical to provide the mentorship and strategy that keeps teams moving forward.”

“IPF is a debilitating disease with no cure,” said Roy. “It affects mainly older populations (>65 years old). A fraction of patients suffering from ARDS (Acute Respiratory Distress Syndrome) from ongoing COVID-19 are also expected to develop IPF-like conditions, which was the case after the last SARS outbreak. We are using state-of-the-art protein design technology to develop an inhaled therapeutic to address this unmet need. Using the help from WE-REACH funding, we will be able to advance this molecule one step closer toward clinical investigation.”

This project received invaluable input from experts at the NIH, Food and Drug Administration, the Centers for Medicare & Medicaid Services, third-party payers, and the United States Patent and Trademark Office, as well as an entrepreneurial committee of local experts in the Seattle area.

The next round of WE-REACH projects will begin in Fall 2022.


WE-REACH is an NIH-designated entrepreneurial product innovation hub for the Pacific Northwest. WE-REACH is supported by public-private partnerships accelerating the transformation of biomedical discoveries into innovative products intended to improve patient care, access, and health. Learn more at

Partners and contributors to WE-REACH include:

In addition to providing funding, CoMotion helps with sourcing, selecting, and ongoing guidance of the projects teams. CoMotion partners with the UW community on their innovation journey, providing tools, connections, and acumen to transform ideas into economic and societal impact. Learn more at

The Institute of Translational Health Sciences (ITHS) is dedicated to speeding scientific discovery to clinical practice for the benefit of communities throughout Washington, Wyoming, Alaska, Montana, Idaho and beyond. ITHS promotes this mission by fostering innovative research, cultivating multi-disciplinary research partnerships, and ensuring a pipeline of next generation researchers through educational and career development programs. Learn more at

The Institute for Protein Design at the University of Washington School of Medicine is creating a new world of synthetic proteins to address 21st-century challenges in medicine, energy, and technology. Learn more about our research at

WE-REACH is supported by NIH Grant 1 U01 HL152401-01.

COVID-19 vaccine with IPD nanoparticles seeks full approval

The vaccine, now called SKYCovione, is a tiny ball of protein studded with 60 copies of the SARS-CoV-2 receptor-binding domain (shown in red). Image: Ian C Haydon / UW Medicine Institute for Protein Design

A COVID-19 vaccine developed at the University of Washington School of Medicine has proven safe and effective in late-stage clinical testing. SK bioscience, the company leading the vaccine’s clinical development abroad, is seeking full approval for its use in South Korea and beyond.

If approved by regulators, the vaccine will be made available through COVAX, an international effort to equitably distribute COVID vaccines around the world. In addition, the Korean government has agreed to purchase 10 million doses for domestic use.

The Seattle scientists behind the new vaccine sought to create a ‘second-generation’ COVID-19 vaccine that is safe, effective at low doses, simple to manufacture, and stable without deep freezing. These attributes would enable vaccination at a global scale by reaching people in areas where medical, transportation, and storage resources are limited.

“We know we have more than two billion people worldwide that have not received a single dose of vaccine,” said David Veesler, associate professor of biochemistry at UW School of Medicine and co-developer of the vaccine. “If our vaccine is distributed through COVAX, it will allow it to reach these people that need to have access to doses.”

The University of Washington is licensing the vaccine technology royalty-free for the duration of the pandemic.

From SK: SK bioscience and GSK’s Adjuvanted COVID-19 Vaccine Candidate Meets Coprimary Objectives in a Phase III Study; Biologics License Application Submitted for SKYCovione™(GBP510/GSK adjuvant) in South Korea

Clinical trial results

A multinational Phase 3 trial involving 4,037 adults over 18 years of age found that the vaccine, now called SKYCovione, elicits roughly three times more protective antibodies than the Oxford/AstraZeneca vaccine Vaxzevria. In these studies, SKYCovione or Vaxzevria was administered twice with an interval of four weeks.

In addition, the ‘antibody conversion rate’, which refers to the proportion of subjects whose neutralizing antibody level increased fourfold or more after vaccination, was higher with SKYCovione. Ninety-eight percent of subjects achieved antibody conversion, compared to 87 percent for the control vaccine.

Among study participants 65 years of age or older, the antibody conversion rate of those vaccinated with SKYCovione was over 95 percent, which was a significant difference compared to the control vaccine (about 79 percent for the elderly), raising the expectation that SKYCovione can be used effectively to protect the elderly.

The Phase 3 trial also found that T cell activation levels, which help protect the body from COVID-19, were similar or higher with SKYCovione.

Phase 1/2 trial results announced by SK bioscience last November and posted as a preprint last month found that SKYCovione was safe and produced virus-neutralizing antibodies in all trial participants receiving the adjuvanted vaccine. In the Phase 3 trial, there were again no serious adverse reactions to the vaccine.

How the vaccine works

Unlike the earliest approved vaccines for COVID-19 that make use of mRNA, viral vectors, or an inactivated virus, SKYCovione is made of proteins that form tiny particles studded with fragments of the pandemic coronavirus. These nanoparticles were designed by scientists at UW Medicine and advanced into clinical trials by SK bioscience and GlaxoSmithKline with financial support from the Coalition for Epidemic Preparedness Innovations. SKYCovione includes GlaxoSmithKline’s pandemic adjuvant, AS03.

“This vaccine was designed at the molecular level to present the immune system with a key part of the coronavirus spike protein. We know this part, called the receptor-binding domain, is targeted by the most potent antibodies,” said Neil King, an assistant professor of biochemistry at UW Medicine and co-developer of the vaccine.

Two laboratories in the UW Medicine Department of Biochemistry led the initial development of the protein-based vaccine: the King Lab pioneered the vaccine’s self-assembling protein nanoparticle technology while the Veesler Lab identified and integrated a key fragment of the SARS-CoV-2 Spike protein onto the nanoparticles.

Years in the making

David Veesler, an assistant professor and HHMI investigator at UW Medicine, has been studying coronaviruses since 2015. Using advanced electron microscopes, researchers in the Vessler lab were the first to identify how the novel coronavirus enters human cells. They were also among the first to report, in Cell, detailed structural information about the virus’ spike protein, a critical piece of its infectious machinery.

In 2016, scientists in the King lab at the UW Medicine Institute for Protein Design began developing a strategy for building a new type of vaccine. They designed proteins that self-assemble into precise spherical particles and later showed that these nanoparticles could be decorated with proteins from a virus. 

Researchers from the two labs worked together in the earliest months of the COVID-19 pandemic to design a protein nanoparticle decorated with 60 copies of the Spike protein receptor-binding domain. The designed nanostructure mimics the repetitive nature of proteins on the surface of viruses, a property that the immune system responds strongly to.

“In order to focus the antibody response where it matters most, we decided to include in the vaccine only a key fragment of the coronavirus spike protein, known as the receptor-binding domain,” said Veesler. “We are thrilled to see that this strategy paid off and has led to a successful subunit vaccine.”

In initial animal studies reported in late 2020 in Cell, the nanoparticle vaccine was found to produce high levels of virus-neutralizing antibodies at low doses. These antibodies target several different sites on the coronavirus Spike protein, a desirable quality that may enhance protection against future coronavirus variants. 

Further preclinical studies, published in Nature, also showed that the vaccine conferred robust protection and produced a strong B-cell response in non-human primates, which may improve how long the protective effects of the vaccine last.

In a recent preprint, a third dose of the vaccine was found to confer strong protection against the Omicon variant of COVID-19 in animals. SK bioscience will initiate testing third doses in 750 human adults soon.

The role of philanthropy

Development of the vaccine at UW Medicine was supported by the Bill & Melinda Gates Foundation, National Institutes of Health, Pew Charitable Trust, Burroughs Wellcome Fund, Fast Grants, and by gifts from The Audacious Project, Jodi Green and Mike Halperin, Nicolas and Leslie Hanauer, Rob Granieri, anonymous donors, and other granting agencies, including Open Philanthropy.

SK bioscience received support for clinical testing from the Bill & Melinda Gates Foundation and the Center for Epidemic Preparedness (CEPI), which is a global partnership supporting vaccine development to fight pandemics. CEPI, along with the World Health Organization and Gavi, the Vaccine Alliance, are co-leaders of COVAX.

Dr. Berger wins additional WRF translational funding

Washington Research Foundation (WRF) has awarded a $700,000 phase three technology commercialization grant to Stephanie Berger, Ph.D., to support the development of an oral biologic for inflammatory bowel disease (IBD). Berger, a translational investigator at the Institute for Protein Design, received two previous grants totaling $300,500 from WRF for this work.

IBD affects roughly three million people in the United States, and rates of diagnosis are increasing. IBD is characterized by chronic inflammation of the gastrointestinal (GI) tract that results in abdominal pain and bloody diarrhea, leading to poor quality of life, malnutrition and dehydration. Severe cases can require parenteral nutrition or bowel resection surgery. Untreated IBD leaves patients at high risk of colorectal cancer.

The standard of care for patients with IBD is oral steroids and broadly immunomodulating small molecules for mild to moderate disease, and injectable biologics for moderate to severe disease. These therapies act by systemic suppression of the immune system, which increases the patient’s risk of serious

With the assistance of earlier grants from WRF, Berger has been developing an oral biologic for IBD that specifically targets interleukin-23 receptor (IL-23R) in the gut. IL-23R is an established target in autoimmune diseases including IBD; blocking it can relieve or eliminate IBD symptoms. Local delivery to the site of inflammation by oral administration can improve safety and convenience compared to systemic injectables. Oral administration of biologics is challenging because most molecules will degrade in the harsh conditions of the gut. Berger and her colleagues at the IPD have developed de novo proteins resistant to gastrointestinal conditions to address this limitation and enable the therapy to retain its efficacy as it reaches its target.

“The WRF has hugely impacted the trajectory of this project, and we are grateful for their continued support,” said Berger. “An oral IL-23R inhibitor can provide biologic-like therapy to IBDpatients with mild to moderate disease who don’t qualify for systemic biologics, and a safer, locally active and convenient alternative to systemic antibodies for patients with moderate to severe disease. We are dedicated to developing this much-needed alternative therapy for IBDand are delighted to receive the WRF’s technology commercialization grant to help us advance to the clinic.”

WRF’s earlier funding enabled Berger and her team to identify and characterize lead candidates, demonstrate their potential as an effective treatment for IBD in vitro and develop methods for manufacturing the inhibitor. The next phases of her research will include demonstration of the biologic’s efficacy in vivo compared with competing therapeutics, and the further development of a commercially viable manufacturing process. She expects to complete these steps by the end of 2022.

“We are delighted to see the progress that this project has made with successive rounds of WRF support. The work draws upon the deep expertise of the IPD in developing novel proteins with enormous therapeutic potential,” said Meher Antia, Ph.D., WRF’s director of grant programs.

About Washington Research Foundation:

Washington Research Foundation (WRF) supports research and scholarship in Washington state, with a focus on life sciences and enabling technologies. WRF was founded in 1981 to assist universities and other nonprofit research institutions in Washington with the commercialization and licensing of their technologies. WRF is one of the foremost technology transfer and grant-making organizations in the nation, having earned more than $445 million in licensing revenue for the University of Washington and providing over $124 million in grants to the state’s research institutions to date.

WRF Capital, a reserve pool of funds for investing in early-stage Washington state companies, has backed 114 local startups since 1994. Returns from these investments support the Foundation’s mission.

For additional information, please visit

Dr. Roy awarded WRF translational funding

Washington Research Foundation (WRF) has awarded a $250,000 phase 2 technology commercialization grant to Anindya Roy, Ph.D., to further develop a novel miniprotein binder for the treatment of idiopathic pulmonary fibrosis (IPF). Roy, an acting instructor in David Baker’s lab at the University of Washington’s Institute for Protein Design (IPD), is building on positive results from a WRF phase 1 grant.

IPF is a chronic progressive respiratory disease with uncertain causes and no cure. It produces scarring in the lungs, resulting in severe breathlessness, fatigue and heart failure. Patients typically survive for less than five years from diagnosis. Current drug therapies can improve overall quality of life for patients with mild-to-moderate IPF, but do not have any effect on overall survival. Moreover, the side effects associated with current therapies can be debilitating, and include diarrhea, nausea and impaired liver function. Lung transplants, the only option to improve an IPF patient’s overall respiratory health, are risky and expensive. There is therefore a clear need for better therapeutics to treat this disease.

As a WRF Innovation Postdoctoral Fellow hired with the assistance of a $31.2 million pledge from WRF to the University of Washington in 2014, Roy designed a miniprotein that binds to the αvβ6 integrin, a cell-surface receptor that promotes fibrosis. αvβ6 has also been identified as a likely contributor to lung damage in patients infected during the severe acute respiratory syndrome (SARS) outbreak in 2003 and is believed to be linked to similar issues in COVID-19 patients. There is evidence that αvβ6 promotes cancers of the lung and other organs.

Other therapies that target αvβ6 are also being developed, but Roy’s inhibitor protein has several advantages that make it a particularly promising therapeutic candidate. The binding to αvβ6 is highly specific, and the miniprotein is also extremely stable, making it particularly suitable for nebulization and delivery as an inhaled therapeutic that can directly target the lungs. WRF provided an $80,000 phase 1 technology commercialization grant in 2019 to enable Roy and his colleagues to initially explore the binder’s potential for therapeutic use against IPF. In vivo tests in mouse models indicated that the miniprotein can be injected to reduce lung fibrosis and improve lung function. The phase 2 funding will seek to generate further data to demonstrate the safety and efficacy of the minibinder as a potential therapeutic, and show that it can be delivered via inhalation.

“Advancing this miniprotein as a potential therapeutic is exactly the type of work that WRF believes will have a genuine impact on human health,” said Meher Antia, Ph.D., director of grant programs at WRF. “With limited options for treating a disease that causes much suffering, the work that Anindya and the IPD team is doing is extremely important and we are delighted to continue to support it.”

“The latest funding from WRF will enable us to reach several major milestones,” said Roy. “We’ll be conducting mouse-model studies to determine the ideal delivery method—which we expect will be through a nebulizer—and measure toxicity to establish optimal dosing. Our unique capabilities to design hyperstable miniproteins give us a competitive advantage over other biologics for a wide variety of pulmonary diseases.”

About Washington Research Foundation:

Washington Research Foundation (WRF) supports research and scholarship in Washington state, with a focus on life sciences and enabling technologies. Learn more at

Drs. Ueda and Lazarovits awarded WRF translational funding

The Washington Entrepreneurial Research Evaluation and Commercialization Hub (WE-REACH) has announced investments in three new awards, including one to researches at the Institute for Protein Design, to expedite early-stage product development for promising biomedical innovations. The three awards are intended to reduce skin injury from wound dressing, to treat COVID-19 induced viral sepsis, and to treat kidney disease.

The recipients include George Ueda, PhD, and James Lazarovits, PhD, of the IPD who are working to develop a new class of therapeutic protein-based nanoparticles. WE-REACH will fund the first application of this platform technology to regenerate the cells lining blood vessels, which break down during severe infection and lead to lethal conditions such as acute respiratory distress syndrome and sepsis. With limited treatment options available, there is a major need for targeted therapies that treat COVID-19 and other infectious diseases.

Other recipients include Eric Seibel, PhD and his multidisciplinary team from UW and Seattle Children’s Hospital is reinventing high adhesion medical tape with UnTape. The goal is to reduce Medical AdhesiveRelated Skin Injury (MARSI) without compromising on secure attachment to the skin, until it is time for rapid, painless removal.

Benjamin Freedman, PhD and the MiniKidney team plan to develop a novel therapeutic strategy for polycystic kidney disease, which affects millions and has no known cure. With this award they will utilize human mini-organs, that re-create the disease in a petri dish, to rapidly advance lead compounds into the clinic.

All three projects have received invaluable input from experts at the NIH, Food and Drug Administration, the Centers for Medicare & Medicaid Services, third-party payers, and the United States Patent and Trademark Office, as well as an entrepreneurial committee of local experts in the Seattle area.

The next round of WE-REACH projects will begin in Fall 2021.

WE-REACH is an NIH-designated entrepreneurial product innovation hub for the Pacific Northwest. WE-REACH is supported by public-private partnerships accelerating the transformation of biomedical discoveries into innovative products intended to improve patient care, access, and health. Learn more at

Dr. Berger awarded WRF translational funding

Washington Research Foundation (WRF) has provided a $250,000 grant to support work carried out by Stephanie Berger, Ph.D., on a new therapeutic for patients with inflammatory bowel disease (IBD). A grant of $50,500 from WRF in 2019 and an award from Washington Entrepreneurial Research Evaluation and Commercialization Hub (WE-REACH) in 2020 enabled Berger, a translational investigator at the University of Washington’s Institute for Protein Design, to conduct early tolerability and efficacy studies for this project.

IBD, which includes Crohn’s disease and ulcerative colitis, is characterized by inflammation and injury of the gastrointestinal tissues. Its symptoms include abdominal pain, diarrhea and fatigue for over three million people in the United States. Severe cases can lead to permanent organ damage and disability. The disease is progressive and currently has no cure.

The standard of care for treatment of IBD is oral immunosuppressive (IS) therapy that leaves patients at risk for infections. Patients who do not respond to oral IS therapy advance to treatment with expensive and inconvenient intravenous biologics.

Berger and her team hope to provide the convenience of oral treatments with the targeted nature of biologic treatments. They have been developing de novo designed peptides that can withstand the harsh conditions of digestion. Peptides designed from scratch have an advantage over natural proteins in that they can be custom-built for extreme stability, with resistance to heat, acid and intestinal proteases. Specifically, Berger is developing an oral therapeutic that targets interleukin-23 receptor (IL-23R), a well-established therapeutic target in autoimmune diseases including IBD. Because the designed therapeutic peptide is highly specific to IL-23R, and the oral delivery directly targets the gut, this therapy promises high efficacy while reducing many of the side effects associated with systemic immune suppression.

“We have been following Stephanie’s work on de novo designed peptides for many years and are extremely excited by its potential to create affordable biologic therapies that allow for new routes of administration that previously had to be delivered systemically. We are hopeful that these new experiments will help us better understand if the platform she has developed could offer a new therapeutic option for patients with IBD,” said Will Canestaro, Ph.D., managing director at WRF.

WRF’s funding will enable Berger to conduct additional testing of the drug’s efficacy for the treatment of IBD in rat models and inform potential refinements to the product. Additionally, this funding will enable the team to develop a scalable manufacturing plan over the next six months.

“The WRF has hugely impacted the trajectory of this project, and we are grateful for their support. We are dedicated to developing a much-needed alternative therapy for IBD and are delighted to receive this funding to help us advance to the clinic,” said Berger.

About Washington Research Foundation:

Washington Research Foundation (WRF) supports research and scholarship in Washington state, with a focus on life sciences and enabling technologies.

WRF was founded in 1981 to assist universities and other nonprofit research institutions in Washington with the commercialization and licensing of their technologies. WRF is one of the foremost technology transfer and grant-making organizations in the nation, having earned more than $445 million in licensing revenue for the University of Washington and providing over $112 million in grants to the state’s research institutions to date.

WRF Capital, the Foundation’s venture investment arm, has funded 108 local startups since 1994. Returns from these investments support grant-making activities at WRF.

For additional information, please visit

David Baker awarded 2021 Breakthrough Prize

The Breakthrough Prize Foundation today announced the winners of the 2021 Breakthrough Prize, recognizing an array of achievements in the Life Sciences, Fundamental Physics and Mathematics. The traditional gala award ceremony, attended by superstars of movies, music, sports and tech entrepreneurship, has been postponed until March 2021.

David Baker, director of the Institute for Protein Design, was awarded a Breakthrough Prove in Life Sciences. “I am excited about this award accelerating progress at the IPD in de novo design of new proteins not found in nature to address current challenges in medicine and beyond,“ Baker said. “I thank my wonderful colleagues — undergraduate and graduate students, postdocs, faculty and staff — at the IPD and UW, and members of the general public contributing to our efforts through the Rosetta@home and Foldit projects.“


At a time when the importance of scientific achievement resounds around the world with more urgency than ever, the Breakthrough Prize continues its nine-year tradition of honoring the most profound and transformative discoveries, celebrating both established researchers (Breakthrough Prize) as well as early-career scientists (New Horizons Prize and – for the first time this year – Maryam Mirzakhani New Frontiers Prize).

In total for this year, the Breakthrough Prize is awarding a collective $18.75 million in support of scientists working on the biggest and most fundamental questions. Science’s largest prize, the Breakthrough Prize has honored more researchers with monetary awards than any other science prize, with more than $250 million being awarded to almost 3000 leading scientists since 2012. The Prize is intended to help scientific leaders gain freedom from financial constraints to focus fully on the world of ideas; to raise the profile and prestige of basic science and mathematics, fomenting a culture in which intellectual pursuits are validated; and to inspire the next generation of researchers to follow the lead of these extraordinary scientific role models.

This year’s Breakthrough Prize winners form a diverse group. They’ve invented tools to unravel the protein folding problem and design entirely novel proteins (including some that could neutralize Covid-19); built exquisitely sensitive table-top instruments to probe the mysteries of dark energy and put Einstein’s theory to the test; developed noninvasive genetic fetal screening tests used by millions of prospective parents worldwide; mapped the neural pathways governing parenting behavior to the level of specific brain cells; revealed and elaborated a cellular pathway heavily implicated in hereditary Parkinson’s disease; and cracked equations describing random processes, from fluctuating stock prices to the motion of sugar in a cup of tea. Each Breakthrough Prize is worth $3 million.

Six New Horizons Prizes of $100,000 each were shared among twelve early-career scientists and mathematicians who have already made a substantial impact on their fields. And three inaugural Maryam Mirzakhani New Frontiers Prizes were awarded to early-career women mathematicians – the number of awards increased from one to three due to the intense interest generated by the Prize and the extremely high quality of nominations. The Maryam Mirzakhani New Frontiers Prize was established in 2019 and named for the famed Iranian mathematician, Fields Medalist and Stanford professor who passed away in 2017. During her exceptionally prolific career, Mirzakhani made groundbreaking contributions to the theory of moduli spaces of Riemann surfaces. Each year, the $50,000 New Frontiers Prize award is presented to women mathematicians who have completed their PhDs within the past two years.




Dr. Berger selected for WE-REACH funding


The Washington Entrepreneurial Research Evaluation and Commercialization Hub (WE-REACH) has announced its first awards to facilitate early-stage product development for two biomedical innovations. WE-REACH invests up to $200,000 per awarded project. Funding comes from the NIH with matching support from our partners at the Institute of Translational Health Sciences, CoMotion, the Institute for Protein Design, the UW School of Pharmacy, and the UW Office of Research.

The first award is with Stephanie Berger, PhD, a Translational Investigator at the Institute for Protein Design, who is developing a novel peptide to treat Inflammatory Bowel Disease. She intends to block an inflammatory cytokine receptor called IL-23R with an oral, locally active peptide, thus providing a safe, convenient, and cost-effective therapy for a disease with few good treatments.

The second award supports Christopher Allan, MD, Associate Professor of Orthopedics at the University of Washington, who is designing a healing glove for patients with burns, wounds, infections, and other traumas to their hands. The device uses negative pressure wound therapy to accelerate recovery.

“We’re excited to help these two innovations on their developmental path toward breaking into the marketplace,” said Dr. Rodney Ho, the executive director of WE- REACH. “In addition to funding, WE-REACH provides value-added product development, regulatory strategy, intellectual property protection, market analysis, and follow-on grant development to help ensure the success of these potentially life-changing technologies.”

Both projects have been reviewed by experts at the NIH, Food and Drug Administration, the Centers for Medicare & Medicaid Services, third-party payers, and the United States Patent and Trademark Office, as well as an entrepreneurial committee of local experts in the Seattle area. WE-REACH has received an additional 26 project applications, of which 7 have been selected for consideration of further support.

The call for our next round of projects will be in Fall of 2020.

WE-REACH is an NIH supported network of public-private partnerships accelerating the translation of biomedical discoveries into commercially viable products to improve patient care and enhance health.

For more information, visit

Rosetta Commons Black Lives Matter Statement

Trigger warning: mentions acts of violence and racism

We, as members of the Rosetta Commons, recognize the grief and frustration of many members of our community and reaffirm our commitment to the safety and dignity of Black lives. The past few months have been traumatic. The recent murders of George Floyd, Breonna Taylor, Tony McDade, Sean Reed, Nina Pop, and Ahmaud Arbery, among others, have highlighted, once again, the pervasiveness of anti-Black racism and police brutality in the United States of America. We condemn these hateful acts in no uncertain terms and stand with the Black community. Black lives matter.

In addition, the global COVID-19 pandemic continues to devastate our society and we acknowledge that Black and Indigenous communities have taken the brunt of the public health impact, putting their lives at risk while working in front-line roles, without protection or recognition. We affirm that these are all manifestations of structural racism.

To our Black colleagues and friends, know that we see you and acknowledge the exhaustion, pain, and extra trauma you carry, especially during this time.

Together, all members of our community should spend this time working to reaffirm our support for one another. We must go further, however, and recognize the part each and every one of us plays in maintaining the systems and structures that allow racism to continue. Only through this understanding can we begin the hard, necessary work of dismantling the racist structures that permeate our institutions and societies.

We can wait no longer to take action, however small, however local. If you are wondering what you can do, we have included some ideas of action steps that we have compiled at the end of this message. This is by no means an exhaustive list, but we hope it can be a beginning of a larger discussion. We encourage everyone, ourselves included, to continue to work every day towards improving our awareness, understanding, and action.

Signed by 296 members of the Rosetta Commons community, including 64 principal investigators, from labs across the United States and the world

Action steps:

●      Educate yourself:

○      Recognize and learn about the role of slavery and oppression of both Black and Indigenous Americans in the founding of the country, and many of its academic institutions.

○      Seek out voices different from those you typically listen to and break your own silence by signing petitions or speaking out against racism. Diversify who you follow on social media platforms.

■      Note: There are many Black educators who have generously contributed their time and resources to anti-racism work that can be easily found via a web search, so we encourage you to NOT overburden or re-traumatize your Black friends and colleagues. Please also do not overburden Black educators if they are not asking for your questions. Instead: listen, learn, amplify.

○      Have conversations and discuss the things you learned with your non-Black family and friends.

○      See the compiled guides below for recommended readings and other educational resources:

■      Anti-racism resources compiled by Sarah Sophie Flicker and Alyssa Klein

– Includes article, book, podcast, and movie recommendations

– Includes organizations to follow and support

– Includes links to more compiled resources and courses

■      Great Big Story — how to become a better Black Lives Matter ally

– Includes book and podcast recommendations

– Includes organizations to follow and support

●      Support justice by donating to one of the following organizations:

○      Campaign Zero works to end police violence in America through policy changes.

○      National Bail Fund Network allows you to donate funds to local organizations to help pay the bail for those who cannot afford it.

○      Black Lives Matter is a global organization working to eradicate white supremacy and build local power to intervene in violence inflicted on Black communities by the state and vigilantes.

○      Black Mama’s Bail Out is a national organization to bail out arrested Black mothers.

○      George Floyd Memorial Fund to support the Estate of George Floyd including funeral expenses, mental health funds, and to benefit and card for his family and children

○      I Run With Maud Fund to assist Ahmaud’s mother, Ms. Wanda Cooper-Jones, and her immediate family with financial support and in their struggle for justice

○      Justice for Breonna Taylor funding and petition to hold the police who murdered Breonna accountable for their inexcusable violence

○      Black Visions Collective works on healing and transformative justice for the Black community in Minneapolis

●      Contact your elected officials:

○      If you reside within the United States of America, call your local, state, and federal government representatives and ask about their police violence policies and legislation.

■      Find your state’s governor

■      Find your city’s mayor

■      Find your district’s representatives

■      Find your state’s senators

○      If you reside outside the United States, consider calling or writing to your ambassadors to the US, foreign or state secretaries, encouraging them to put pressure on the US federal government to acknowledge failures in human rights protections

●      Be safe when you demonstrate or take direct action:

○     The NW Chapter of the National Lawyers Guild has a hotline number for legal aid (206-658-7963). They are seeking additional pro-bono legal support, if anyone knows lawyers interested in volunteering email

○     Know your rights before heading out and make sure that a friend knows where you are.

●      Work for diversity, equity and inclusion within our Rosetta community:

○      Create safe space in the community for Black and Indigenous People of Color (BIPOC), Non-Black POC (NBPOC), and others to discuss. Be mindful of turning to them for advice and/or extra work without their open offering of time and energy.

○      Provide resources to labs on affinity groups, other safe spaces, but also career resources, opportunities for people from marginalized communities. If you do not have this expertise yourself, bring in others who do to help.

○      Develop a lab action plan to actively dismantle racism, led by the community and use accountability measures and periodic reviews with the lab.

○      Attend an affinity group conference to network with diverse communities and share our work with young scientists. Details on #rosetta-diversity, and if you are interested, please sign up on this document. [link removed]

○      Discuss within your lab how to ensure a safe and inclusive environment.

■      A good starting point is the Harvard Implicit Association Test, which allows you to examine your own implicit biases.

Introducing UWARN: The United World Antiviral Research Network

The newly formed United World Antiviral Research Network (UWARN) will bring together researchers from institutions in several countries to spot and confront emerging pandemic viruses. The network will provide surveillance for emerging pandemic viruses, develop urgently needed diagnostics and therapeutics, and expand understanding of viral immune responses, which is key to vaccine development.

The network will include investigators from the University of Washington School of Medicine Institute of Protein Design, and the School of Public Health; Fred Hutchinson Cancer Research Center in Seattle, and collaborators at Rockefeller University in New York City, FIOCRUZ  in Brazil, IRESSEF in Senegal, KRISP in South Africa, Aga Khan University in Pakistan) and Chang Gung University in Taiwan.

An $8.75 million grant over five years from the National Institutes of Health’s Institute of Allergy and Infectious Diseases Center for Research in Emerging Infectious Diseases is funding the creation of UWARN.

Wesley C. Van Voorhis, professor of medicine, Division of Allergy and Infectious Diseases at the UW School of Medicine, and co-director of the Center for Emerging and Reemerging Infectious Disease, helped connect researchers in the United States and abroad to become part of the network. “We are very excited to establish UWARN, and the new collaborations with the five overseas partners to better address viral pandemics,” said Van Voorhis.

In addition to Van Voorhis, UWARN has three other principal investigators: Judith Wasserheit, professor and chair of global health and professor of epidemiology at the UW School of  Public Health, and professor of medicine, Division of Allergy and Infectious Diseases,  UW School of Medicine; Michael Gale Jr., professor of immunology at the UW School of Medicine.  He is also director of the Center for Innate Immunity and Immune Disease and co-director of the Center for Emerging and Reemerging Infectious Diseases; and Peter Rabinowitz, professor of  environmental and occupational health sciences, epidemiology, and global health in the UW School of Public health, and professor of family medicine and of medicine, Division of Allergy and Infectious Diseases, at UW Medicine.  He is also the director of the Center for One Health Research. The four principal investigators and their centers came together under the auspices of the UW Metacenter for Pandemic Preparedness.

UWARN was established during the COVID-19 global pandemic. Image: UW Medicine

UWARN will address emerging viral infectious diseases by carrying out research with collaborating partner research laboratories in Brazil, Pakistan, Senegal, South Africa and Taiwan.

The research will develop innovative diagnostic reagents, including human viral-neutralizing antibodies and designed proteins that release light when antibodies to virus are present in blood.  This work will include LOCKR technology from the Institute of Protein Design.  LOCKR is a nanoscale, bioactive protein switch, designed from scratch,  that can work inside living cells to modify internal mechanisms,  sense and respond to cues, and perform other tasks.

UWARN research also hopes to improve understanding of how viruses manipulate the human immune system.  This research may facilitate the identification of better biomarkers to predict severe disease and the development of host-directed therapies that could improve outcomes from viral infection.

UWARN will serve as one of ten National Institute of Allergy and Infectious Disease Centers within the Centers for Emerging and Reemerging Diseases Network.  This network consists of multidisciplinary teams of investigators, working in more than 30 countries.

The Centers for Emerging and Reemerging Diseases Network will be coordinated by the Research Triangle Institute, a large nonprofit research organization with regional and project offices in more than 75 countries, and Duke University, which is known for its leading-edge medical research and for the Duke Human Vaccine Institute. Together they will serve as the CREID Coordination Center.


With an emergency meeting, RosettaCommons aims to accelerate COVID-19 research

On the day the number of confirmed global COVID-19 infections crossed one million, a team of over three hundred scientists from around the world kicked off a virtual conference aimed at stopping the virus.

The event was an emergency meeting of member labs from the RosettaCommons, a consortium of over 90 laboratories who together develop and apply Rosetta, a powerful molecular modeling suite. Using this software, scientists have previously created experimental vaccines, candidate antiviral drugs and helped solve the structures of important infectious disease proteins, enabling further drug development. 

As of early April, dozens of RosettaCommons labs had begun research on COVID-19. 

This community of computational biochemists normally gathers in person each summer and winter to share updates and spark new collaborations. Given the urgency of the pandemic, however, an emergency meeting was called by Jeffrey Gray, a RosettaCommons member and professor of chemical and biomolecular engineering at Johns Hopkins. 

“I think our community has much to offer,” said Gray. “We have powerful tools that have led to new technologies and a strong tradition of collaboration. Our work is needed now.”

Computer-generated vaccines

Vaccine design was a major focus of the two-day event. Multiple researchers presented their preliminary efforts to create custom vaccines against SARS-CoV-2, the virus that causes COVID-19. Rosetta’s proven ability to enable the atomically accurate design of custom immunogens [1,2] makes it a powerful tool in the race for an effective vaccine.

Neil King, assistant professor of biochemistry at the University of Washington and member of the Institute for Protein Design (IPD), shared his lab’s efforts to design and test multiple subunit and nanoparticle vaccines. This research, which is among the only work still being done in person at the IPD, is largely supported by the Bill & Melinda Gates Foundation. 

Tim Whitehead, associate professor of chemical and biological engineering at CU Boulder, is using Rosetta to stabilize proteins from SARS-CoV-2, including the spike protein, in hopes of improving their immunogenicity. 

Researchers from Scripps Research and the Wistar Institute also presented their unique efforts to create novel vaccines by design, including strategies for presentation of specific and broadly neutralizing epitopes [3]. 

Designer antivirals

The spike protein from SARS-CoV-2 is “a beast,” noted Eva-Maria Strauch, assistant professor of pharmaceutical and biomedical sciences at the University of Georgia, Athens. Her lab is applying  Rosetta to try to create proteins that could block the coronavirus spike. If successful, these molecules would constitute a new class of antivirals. 

“Each [virus] has its own secrets,” said Strauch, whose initial round of experimental coronavirus antivirals will be tested in the lab soon. Strauch has been researching countermeasures for infectious disease proteins for years, but she said with COVID-19, her academic niche “became pretty real.”

Similar efforts are being persuaded in David Baker’s lab at the IPD. Graduate students Brian Coventry and Buwei Huang presented a new method for designing binders in high throughput. IPD scientist Brian Koepnick also shared how the computer game Foldit is challenging players to come up with their own antiviral designs. Ninety-nine of the most promising solutions from Foldit players will soon be tested for activity in Seattle. 

The Fleichman lab at the Weizmann Institute of Science in Israel is working to automate the design of certain antivirals. Graduate student Jonathan Weinstein shared an update on their efforts to automatically design anti-coronavirus nanobodies. These natural proteins resemble antibodies, but are much smaller, potentially making them easier and cheaper to produce. 

The role of machine learning 

Several labs are applying techniques from machine learning to enhance their research. 

In the Baker lab, graduate student Nao Hiranuma is developing deep learning models that make filtering binders designs two to three times more successful. Coming up with millions of putative binders on the computer is now relatively easy, said Coventry. “Filtering has been the name of the game.” The team aims to test only the most promising candidates, then to use data from high-throughput experiments to guide further rounds of design.

In the Meiler Lab at Vanderbilt University, machine learning techniques are being used to guide the design of SARS-CoV-2 protease inhibitors. Graduate student Benjamin Brown presented an “in-progress algorithm” that he has readapted due to the urgent need to stop COVID-19. 

The power of teamwork

Even in extraordinary times, the RosettaCommons pulls together. Preliminary data and research efforts were shared openly during the conference. Members are also creating lists of resources — reagents, genes and computational methods — to help coordinate global efforts.

The RosettaCommons maintains its commitment to continue communicating and supporting member labs, including a long-standing effort to be inclusive of all people in our work. During the conference, live closed-captioning was donated by

Volunteers rally to Rosetta@Home to stop COVID-19

Planetariums, businesses and more are now donating idle computing power to help advance biomedical research. Image: Frost Science

As schools, museums, offices and stores shutter to slow the spread of the new coronavirus, millions of people are now finding themselves stuck at home. Fortunately, even in these trying times, there are are small steps that anyone can be take to help combat COVID-19.

One option is to donate to biomedical research — but doing so doesn’t necessarily require opening your wallet.

Rosetta@Home is a distributed computing project that relies on a network of volunteer computers. The goal of the project is to learn more about important biomolecules, including the proteins that comprise the new coronavirus. In doing so, scientists may discover how to create medicines and vaccines to stop it. Rosetta@Home operates on the Berkeley Open Infrastructure for Network Computing, or BOINC, which has existed since 2002. BOINC is open-source and funded primarily by the National Science Foundation.

In recent days, Rosetta@Home has seen a surge of new volunteers who are generously donating the use of their idle desktop, laptop and smartphone processors. The number of active users has doubled, and four of the project’s ten best compute days have occurred just in the last week. This giving is powering research on the new coronavirus at the UW Institute for Protein Design and at other universities.

New volunteers stepping up

To keep the public safe from the new coronavirus, the Phillip and Patricia Frost Museum of Science in Miami, Floria has had to temporarily close. The museum is home to a state-of-the-art planetarium, powered by the Frost Planetarium’s Dell PowerEdge 7910 servers, consisting of 168 processors. The Frost Museum just announced that it is generously donating its computer downtime to the Rosetta@Home project.


Image: Frost Science

“As a leading scientific institution, we wanted to find a way to repurpose the powerful computing technology we had idle with our closure. We are now actively supporting groundbreaking research that will help us solve some of the world’s biggest challenges, such as COVID-19. Now more than ever, we need to work together and keep science and high quality research at the forefront of our thinking. We encourage others to join our Frost Science BOINC team and help make a difference, right from their homes” said Frank Steslow, Frost Science President & CEO.

Modus Create, a multi-national consulting firm, has also announced that it is donating all spare computer parts at its headquarters in Reston, Virginia to both Rosetta@Home and Folding@Home, a similar project. “Humanity’s ingenuity is often best demonstrated at times of crisis,” they write. Like many volunteers, Modus has also created a team on BOINC to organize their giving.  Over 11,000 such teams have been formed, including many from universities, business and other institutions.

It is easy to join Rosetta@Home

Joining Rosetta@Home is simple. First, download the BOINC app on a compatible device (Windows, Mac, Linux or Android). Then, select Rosetta@Home as your preferred project. That’s it! Rosetta@Home is not for profit, operated by academics and will not collect any of your personal information. Follow the project on Twitter for updates: @RosettaAtHome

With Rosetta@Home running on your devices, you can contribute to science even as you sleep.

Play Foldit to help stop coronavirus (VIDEO)

You don’t have to be a scientist to do science! By playing the computer game Foldit, you can help discover new antiviral drugs that might stop the novel coronavirus. The most promising solutions will be manufactured and tested at the University of Washington Institute for Protein Design in Seattle.

Foldit is run by academic research scientists. It is free to play and not-for-profit. To get started, download Foldit on your computer and create a username.

We recommend that new players start with the Foldit Intro Puzzles.
After some practice, move on to the Science Puzzles and try out the Beginner: Coronavirus puzzle.
We also have an advanced coronavirus puzzle where you can try to design an antiviral protein from scratch!

To meet other players, check out the Foldit Discord channels.

Note: Foldit is an interactive computer game and not a distributed computing project. If you would like to donate spare computer time to science, please check out the Rosetta@Home project on BOINC.

To support laboratory testing, please consider making a donation to the Institute for Protein Design at the UW School of Medicine.

Follow Foldit on Twitter.

Rosetta’s role in fighting coronavirus

We are happy to report that the Rosetta molecular modeling suite was recently used to accurately predict the atomic-scale structure of an important coronavirus protein weeks before it could be measured in the lab. Knowledge gained from studying this viral protein is now being used to guide the design of novel vaccines and antiviral drugs.

On January 30, the World Health Organization declared the ongoing coronavirus outbreak (COVID-19, caused by the virus SARS-CoV-2) a public health emergency of international concern. Scientists around the world are racing to learn more about this deadly virus which has already spread to more than 30 countries.

The best predicted structure of the spike protein (blue) closely matches the structure later solved by Cryo-EM (tan).

Importantly, structural biologists are quickly gaining insights into what the proteins that make up this virus look like and how they function.

One viral protein in particular — the spike protein — allows SARS-CoV-2 to fuse its membrane with those on human cells, leading to infection. Researchers at UT Austin this week used cryo-electron microscopy to create the first 3D atomic-scale map of the SARS-CoV-2 spike protein in its prefusion state. Like other viral spike proteins, this spear-like molecule is thought to take on two distinct conformations: one before it infects cells, and a different, ‘post-fusion’ state after. Other groups are also applying similar techniques in their laboratories to learn even more about this critically important protein.

Coronavirus spike proteins — like the proteins found in your body — ‘fold up’ in order to function.

Robetta, our online Rosetta-based protein structure prediction server that is free to use for academics, was able to accurately predict the results of this folding process. In early February, it calculated 3D atomic-scale models of the SARS-CoV-2 spike protein in its prefusion state that closely match those later discovered in the lab.

To download these models, click here.

Designing therapeutics

With this knowledge in hand, researchers at the Institute for Protein Design are now working to create new proteins to neutralize coronavirus. If successful, these antiviral proteins would stick to the SARS-CoV-2 spike protein and thereby prevent viral particles from infecting healthy cells.

A de novo miniprotein binder (pink) designed to bind to the SARS-CoV-2 spike protein.

These new drug candidates — a type of molecule we call ‘mini-protein binders’ — seek to combine the specificity of antibodies with the high stability and manufacturability of small molecule drugs. Mini-protein binders are custom-designed on the computer to adhere only to specific targets, such as specific grooves on the SARS-CoV-2 spike protein.

In 2017 we first reported our high-throughput mini-protein binder design strategy. Together with colleagues we designed and tested over 22,000 mini-proteins that target influenza and botulinum neurotoxin B, along with over 6,000 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. 

The de novo designed mini-protein binders produced in that study exhibited much greater stability at elevated temperatures and better neutralization in animal models than comparable antibodies and natural protein derivatives. Probably as a result of their small size and very high stability, they also elicited little immune response. The best of the flu-targeting designs provide prophylactic (before infection) and therapeutic (after infection) protection against influenza infection in mouse models with a potency rivaling or surpassing that of antibodies.

Our researchers are now designing on the computer tens of thousands of anti-coronavirus mini-protein binders. In the coming weeks we hope to produce these mini-proteins in the lab and measure their ability to bind to spike protein. Following this, much more laboratory testing would still be needed to evaluate the safety and efficacy of these experimental coronavirus drugs.

Designing coronavirus vaccines

Technology developed in the King Lab at the Institute for Protein Design is also being applied to try to create an effective vaccine against SARS-CoV-2.

This experimental SARS-CoV-2 vaccine was made by fusing multiple copies of the coronavirus spike protein (red) to the outside of a designed protein nanoparticle (orange and gray).

Our colleagues in the Veesler Lab in UW Biochemistry and at the Vaccine Research Center at the National Institutes of Health have fused coronavirus spike proteins to the outside of Rosetta-designed protein nanoparticles to form self-assembling vaccine candidates. Some of these are currently being evaluated in mice. This work builds off our recent efforts to create respiratory vaccines by design

“We are working with our collaborators at UW, the NIH, and the Bill & Melinda Gates Foundation to help create a safe and effective vaccine for not only SARS-CoV-2 but other coronaviruses as well,” said Neil King, who leads the IPD’s vaccine design efforts.

“This outbreak has illustrated that it’s all hands on deck, and all of us together against the bugs, in the fight against infectious disease. The good news is that the community has developed robust methods for antigen design and display over the last several years that are allowing the rapid generation of vaccine candidates that will likely be highly immunogenic.”

Introducing WE-REACH, a new biomedical innovation hub

With $4 million in matching funds from the National Institutes of Health, the University of Washington has created a new integrated center to match biomedical discoveries with the resources needed to bring innovative products to the public and improve health.
“The University of Washington and regional partner institutions produce some of the most exciting biomedical discoveries and technologies in the world, but we always find it challenging to support their product development as they move into the early commercialization phases,” said the new center’s executive director Rodney Ho, a professor in the UW School of Pharmacy.

UW’s newly funded Washington Entrepreneurial Research Evaluation and Commercialization Hub (WE-REACH), with an annual budget boosted to $1.4 million by contributions from other partners, is organized to mentor and support biomedical entrepreneurs as well as provide project funding to fuel four to six biomedical startups a year with up to $200,000 each. Those projects will include innovative disease treatments, new drugs, diagnostics, genetic testing and health technologies. Ho said the center will support innovation steps not typically supported by research grants, such as human clinical trials or the development of and access to products.


In addition to the NIH, WE-REACH partners include the Institute of Translational Health Sciences, UW CoMotion, the Institute for Protein Design, the School of Pharmacy, and in collaboration with the UW’s Population Health Initiative Innovators will also receive guidance from multiple academic departments and regional institutions. Those institutions include the Fred Hutchinson Cancer Research Institute, Seattle Children’s and other universities in the five states that make up the WWAMI region.

“We are delighted to welcome WE-REACH as a partner,” said Tong Sun, executive director of the Institute of Translational Health Sciences. “At ITHS we are committed to accelerating the translation of discoveries to the clinic. WE-REACH investigators will be able to leverage ITHS programs and resources, so they can help us in our mission to improve health in our communities. This is a very exciting area of translation that we are happy to support.”

WE-REACH is one of five national commercialization hubs selected for funding by the NIH in 2019.

“The journey of biomedical discoveries to products that improve people’s health is expensive and risky. The process requires strategic investment of know-how as well as financial support from public-private partnerships,” said Ho.

“Spinning life science innovations out of research institutions requires expertise and funding that is hard to source in the academic environment,” adds Fiona Wills, assistant vice president, innovation development at CoMotion, UW’s collaborative innovation hub. “WE REACH builds on the infrastructure CoMotion has developed, including our gap fund and training, to provide critical resources needed to de-risk promising technologies into pre-clinical and clinical development.”

The new center will be located in the South Campus Center on the University of Washington’s Seattle campus and at the Institute of Translational Health Sciences in UW Medicine South Lake Union. It will be staffed by Professor Rodney Ho, Executive Director; Terri Butler, Associate Director of Outreach and Partnerships; Matthew Hartman, Coordinator; Christine Jonsson, Administrator; and new hires in project management and technology management roles.

For information on the new center and how to submit a grant submission, please contact Matthew Hartman at or 561-339-0676.

By Jake Ellison, University of Washington

NIH Grant: 1 U01 HL152401-01

SCI-STEM Symposium 2020

The Institute for Protein Design at the University of Washington held the second symposium aimed at providing strategies to address diversity challenges in science, technology, engineering, and math (STEM). The Strategies for Cultivating Inclusion in STEM (SCI-STEM) symposium featured leading keynote speakers, panel discussions, and interactive breakout sessions. Members of the STEM community at all levels, from undergraduates through senior scientists, deans and heads of departments at the university attended.

James E. West, PhD – National Inventors Hall of Fame

Sharon Razovsky, PhD – Increasing Participation of Students with Disabilities in STEM

Edwin Lindo, JD – Justice in STEM

Panel: Research as a Vehicle for Change

Our outstanding postdoc mentors

Each year, a panel here at the University of Washington nominates a small number postdocs of the UW Graduate School’s Postdoc Mentoring Award. We are thrilled to share that this year four of our postdocs have been nominated! Each brings invaluable encouragement and advice to their graduate student and undergraduate trainees.

Gabriella Wolff, Biology

Michael Beyeler, Psychology
David Grossnickle, Biology
Matthew Hart, Pathology
Karla-Luise Herpoldt, Biochemistry
Kelly Hines, Medicinal Chemistry
Parisa Hosseinzadeh, Biochemistry
Kenneth Matreyek, Genome Sciences
Jillian Pintye, Global Health
Julia Ritterhoff, Anesthesiology and Pain Medicine

Ivana Bussi, Biology
Sam Bryson, Civil and Environmental Engineering
Tanvi Deora, Biology
Gilbert Martinez, Physiology and Biophysics
Irene Rembado, Physiology and Biophysics
Anindya Roy, Biochemistry
Jon Rueckemann, Physiology and Biophysics
Franziska Seeger, Biochemistry
Guozheng Shao, Material Science and Engineering
Han-Wei Shih, Biology



Our Audacious Project

Yesterday we were thrilled to reveal that we have been selected as part of The Audacious Project, a philanthropic collaborative organized by TED!

You can read all about our project here. In short, we are expanding our institute into a global hub of innovation so that we can apply protein design to some of the most pressing challenges facing our species. David Baker gave an inspiring talk live on the TED stage in Vancouver, BC, where he laid out his vision for the project.

Check back soon to find links to the full talk online.

Nature article on IPD work voted ‘2018 Reader’s Choice’

Readers of Nature’s News & Views selected an article about our work as their 2018 Reader’s Choice!

The article, written by Roberto Chica of the University of Ottawa, does a fantastic job detailing our recent publication on de novo fluorescence-activating proteins — and the challenges of de novo protein design more generally.

From the article:

“The development and application of this computational method for designing β-barrel proteins that bind small molecules is the first demonstration of the de novo design of both protein fold and function, a milestone in the field. Previous computational designs of ligand-binding proteins relied on building a binding cavity into a protein template found in nature, or one that had previously been created in the laboratory. By contrast, Dou and co-workers have designed a β-barrel protein that has a shape distinct from those found in nature, and constructed a binding pocket that is specifically tailored to a target small molecule.

As noted earlier, the authors’ initial designs needed further optimization to identify proteins that have sufficiently high binding affinities for potential applications. More-accurate predictions of protein structures are needed to eliminate the need for such fine-tuning. One way of achieving this might come from recognizing that proteins are not rigid molecules that adopt a single predominant structure — like all machines, proteins need to move to accomplish their tasks with high efficiency5,6. Indeed, ligand binding is often the trigger that causes a protein receptor to undergo a structural change enabling the transmission of a biological signal7. Computational methods for the rational design of proteins that undergo particular structural changes have recently been developed8. If these could be combined with Dou and colleagues’ approach, it might be possible to access more-complex protein functions than were previously possible, opening the door to the on-demand creation of protein-based molecular machines.”

We thank Chica and the News & Views readers for their interest in our work.

2018 IPD Newsletter from David Baker

It was a great year for the Institute for Protein Design and we couldn’t have done all of our amazing work without the support from our donors and contributors! Thank you to everyone who helped us, whether through a donation, collaboration, playing Foldit, or otherwise. We’ve filled the IPD Newsletter with all of the progress we’ve made in 2018, so take a look! In the PDF there are links to articles and publications, but many of them can also be found on either this website, or at Please continue to watch our growth as we head into 2019!

– David

Click here to download the IPD Newsletter Update 2018

Graphic: Possu Huang

Open Philanthropy Project Awards $11.3 Million to Institute for Protein Design at UW Medicine

Gift seeks universal flu vaccine and will advance Rosetta software        

Seattle — The Institute for Protein Design (IPD) at UW Medicine in Seattle has been awarded $11.3 million from the Open Philanthropy Project to support the institute’s technological revolution in protein design and support its work on the development of a universal flu vaccine.

The Open Philanthropy Project is based in San Francisco, California. The gift is:

  • One of Open Philanthropy Project’s largest awards in the sciences to date.
  • Its first scientific gift in the Seattle area.
  • Its first investment at UW Medicine.

The gift comes in two parts:

  • $5.6 million to refine and advance Rosetta, the software platform for protein design originally developed at UW
  • $5.7 million for the institute’s program to develop a universal flu vaccine.

“We’re excited to help move science forward in ways not seen before with proteins, which are essential to life. This grant recognizes that UW Medicine is at the forefront of unlocking the keys to the use of proteins in medical settings,” says Chris Somerville, a Program Officer for Scientific Research at the Open Philanthropy Project. “The universal flu vaccine is a tough nut to crack, but David Baker has shown the ability to pioneer life-changing scientific research. It’s exciting that whether a universal flu vaccine is developed or not, this gift will build techniques and technologies that will advance science and have a huge variety of implications in medicine and industry.”

Proteins are the workhorses of all living creatures, fulfilling the instructions of DNA. Existing proteins are the products of billions of years of evolution and carry out all the important functions in our body—digesting food, building tissue, transporting oxygen through the bloodstream, dividing cells, firing neurons, and powering muscles.

“This gift is speeding up a technological revolution in how we design proteins. Our team can now custom design proteins from scratch, creating entirely novel molecules that can be used for new treatments, new diagnostics and new biomaterials. The Open Philanthropy Project’s generous gift will transform our ability to design proteins from scratch,” said David Baker, the institute’s director as well as professor of biochemistry at the University of Washington School of Medicine and Howard Hughes Medical Institute investigator. Baker is the Henrietta and Aubrey Davis Endowed Professor in Biochemistry.

Computer-based protein design

The gift will accelerate the institute’s efforts to advance protein design on computers with the Rosetta software originally developed in Baker’s lab. Baker said the gift will transform’s the institute’s ability to design proteins on computers, test them by creating the actual proteins in the lab, and then repeat the process at an enormous scale. “By speeding up this cycle of design, building and testing, we will be able to systematically improve protein design methods,” Baker said.

The results and new Rosetta software will be shared with the scientific community through the Rosetta Commons. The Rosetta Commons is a collaboration founded by  Baker with almost 100 developers from 23 universities and laboratories who regularly contribute to and share the Rosetta source code, currently over 3 million lines.

This project is in collaboration with Frank DiMaio, assistant professor of biochemistry at the University of Washington School of Medicine.

Universal flu vaccine

Current flu vaccines are intended to protect only against currently circulating strains, requiring the vaccines to be reformulated every year as the virus mutates, and are only partially protective. With Open Philanthropy Project support, Baker and his collaborators, Neil King and David Veesler, both assistant professors of biochemistry at the University of Washington School of Medicine, will be leading an effort to design universal flu vaccine candidates that provide durable protection against multiple virus strains, including strains that have the potential to cause pandemic outbreaks. The vaccine candidates will be based on the self-assembling protein nanoparticle technology Baker and King have developed. To ensure that the vaccine candidates are thoroughly and efficiently tested, they will work in close collaboration with the groups of Dr. Barney Graham and Dr. Masaru Kanekiyo at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health.

The goal is to design a nanoparticle vaccine that can trigger an effective immune response to many existing flu strains as well as new strains that might appear in the future. Researchers hope such a universal vaccine might need to be administered no more than every five years, ending the need for annual flu vaccinations.

The Institute for Protein Design, founded in 2012 at UW Medicine in Seattle, is a research center that focuses on creating custom-designed proteins to improve human health and address 21st-century challenges in medicine, energy, industry and technology. In the human body, proteins are chains of amino acids directed by genes to perform essential life functions in every cell including in the brain, muscles and internal organs. Proteins also have implications for the design of new materials outside of the human body such as new kinds of fibers. The institute’s team of 120 faculty, staff, postdoctoral fellows and graduate students work on designing entirely novel proteins from scratch to create, for example, new, safer and more potent vaccines and therapeutics to prevent or treat people with serious diseases. The institute has assembled some of the world’s top experts in protein science, computer science, biochemistry and biological structure, pharmacology, immunology and clinical medicine.

About the Open Philanthropy Project

The Open Philanthropy Project identifies outstanding giving opportunities, makes grants, follows the results, and publishes its findings. Its main funders are Cari Tuna and Dustin Moskovitz, a co-founder of Facebook and Asana.

See news in UW Medicine Newsroom. For more information on the IPD check out this video!

SCI-STEM Symposium 2018

Update 2018-07-26: The 2018 SCI-STEM Symposium was recently featured in an eLife article.

The Institute for Protein Design at the University of Washington held its first ever symposium aimed at providing strategies to address diversity challenges in science, technology, engineering, and math (STEM). The Strategies for Cultivating Inclusion in STEM (SCI-STEM) symposium featured leading keynote speakers, panel discussions, and interactive breakout sessions. Members of the STEM community at all levels, from undergraduates through senior scientists, deans and heads of departments at the university attended.

As a technical institute dedicated to the pursuit of knowledge and discovery, we know first-hand that innovation in STEM requires bringing in new perspectives to difficult problems. Research groups that create and successfully maintain workplaces where all voices are heard will continue to outperform those that don’t. This website showcases some of the conversations and lectures held at this inaugural SCI-STEM and we hope the extended community at UW and beyond can benefit from the practical tools, data driven ideas and methods proposed towards cultivating a more inclusive workplace. We invite you to keep the conversation going on social media using the hashtags #diversifySTEM .

Dr Hannah Valantine – NIH Addresses the Science of Diversity: Focusing on Institutional Change

Download Slides: NIH Addresses the Science of Diversity: Focusing on Institutional Change and NIH Scientific Workforce Diversity Toolkit.

Prof. Anthony Greenwald – UW – How to remedy unintended bias:  “Stop it!” vs. “Document it”

Dr Ben Wiggins & Dr Elaine Klein – UW – Higher-education STEM instructors can design and practice for equitable student training

Download Slides: Higher education STEM instructors can design and practice for more equitable student training.

Prof. Michael Summers  – UMD The Meyerhoff Scholars Program:  A successful model for developing a more inclusive STEM PhD workforce

De Novo Design of Membrane Proteins

It is now possible to create complex, custom-designed transmembrane proteins from scratch !   Today Baker lab members published in Science  “Accurate computational design of multipass transmembrane proteins

Designed Membrane Protein:  (Left) Side view showing the designed membrane protein inside the membrane.  (Right)  Top view of same.

The Abstract reads as follows:

The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer—a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices—are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions.





End-of-year profile in The New York Times

At the end of a historic year for protein design, the Baker lab was honored to be profiled in the New York Times by famed science writer Carl Zimmer. Zimmer writes about the technology, progress and promise in the field, noting the contributions from our wonderful crowdsource participants.

Graphic: John Hersey / New York Times

On the technology front, Rosetta continues to improve year over year thanks to the hard work of the RosettaCommons. Given ongoing advances in DNA synthesis and protein screening technology, there is still so much more we can design and discover.

Progress in the field of protein design was staggering in 2017. Thousands of de novo proteins were produced, with new features, folds and functions. From immunotherapy, drug delivery, anti-viral activity and more, this truly was an awesome year for applied protein design.

The promise of the field has never been greater. As David says at the close of the article, “As we understand more and more of the basic principles, we ought to be able to do far better.”

Read the full profile here: Scientists Are Designing Artisanal Proteins for Your Body

A New World of Designed Macrocycles

Today marks another major step forward for peptide based drug discovery.  IPD researchers report in Science the computational design of a new world of small cyclic peptides, “Macrocycles”,  increasing the number of the known kinds of these molecules by multiple fold.  The conceptual art image below “Illuminating the energy landscape” shows the power of computational design to explore and illuminate structured peptides across the vast energy landscape.

Small peptides have the benefits of small molecule drugs, like aspirin, and large antibody therapies, like rituximab, with fewer drawbacks.  They are stable like small molecules and potent and selective like antibodies.

Image by Vikram Mulligan. Computational design calculations reveal the peptide macrocycle energy landscape.

Abstract reads as follows.

Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods.

Check out these additional news items from UW Medicine, and Science

Read more and download the paper at the Baker lab web site.

Synthetic Nucleocapsids Have Arrived

Published today in Nature, IPD researchers describe the first synthetic protein assemblies — dubbed synthetic nucleocapsids — that encapsulate their own genome and evolve in complex environments.

Computationally Designed Synthetic Nucleocapsid
Computationally Designed Synthetic Nucleocapsid, Illustration by Institute for Protein Design & Cognition Studio

Synthetic nucleocapsids are built to resemble viral capsids and could be used in future to deliver therapeutics to specific cells and tissues. These icosahedral protein assemblies are based off of previously reported results from the Institute for Protein Design.

The image above visualizes the de novo creation of synthetic nucleocapsids from computationally designed proteins and their evolution to acquire properties that could be useful for drug delivery and other biomedical applications. The narrative was designed as a futuristic hologram projection realized through spiraling DNA composed of binary zeros and ones. The projection and computational imagery evoke futuristic technology and design, while calling out natural evolution through the DNA spiral “time-scale” motif. The heads-up display iconography showing a blood bag, mouse, and RNase A convey the challenges we used to evolve the synthetic nucleocapsids. The single net impression of this image is engaging + enlightening and shows that we are entering the next epoch of synthetic biology in which biological systems can be designed and created from scratch.


The challenges of evolution in a complex biochemical environment, coupling genotype to phenotype and protecting the genetic material, are solved elegantly in biological systems by the encapsulation of nucleic acids. In the simplest examples, viruses use capsids to surround their genomes. Although these naturally occurring systems have been modified to change their tropism and to display proteins or peptides, billions of years of evolution have favoured efficiency at the expense of modularity, making viral capsids difficult to engineer. Synthetic systems composed of non-viral proteins could provide a ‘blank slate’ to evolve desired properties for drug delivery and other biomedical applications, while avoiding the safety risks and engineering challenges associated with viruses. Here we create synthetic nucleocapsids, which are computationally designed icosahedral protein assemblies with positively charged inner surfaces that can package their own full-length mRNA genomes. We explore the ability of these nucleocapsids to evolve virus-like properties by generating diversified populations using Escherichia coli as an expression host. Several generations of evolution resulted in markedly improved genome packaging (more than 133-fold), stability in blood (from less than 3.7% to 71% of packaged RNA protected after 6 hours of treatment), and in vivo circulation time (from less than 5 minutes to approximately 4.5 hours). The resulting synthetic nucleocapsids package one full-length RNA genome for every 11 icosahedral assemblies, similar to the best recombinant adeno-associated virus vectors. Our results show that there are simple evolutionary paths through which protein assemblies can acquire virus-like genome packaging and protection. Considerable effort has been directed at ‘top-down’ modification of viruses to be safe and effective for drug delivery and vaccine applications; the ability to design synthetic nanomaterials computationally and to optimize them through evolution now enables a complementary ‘bottom-up’ approach with considerable advantages in programmability and control.

Read more and obtain a PDF of the paper from the Baker lab web site.  Also read additional news items from Science Daily, GeekWire, UW Newsroom, CEN

Foldit to Disarm a Fungal Toxin

Foldit alfatoxin project update 7/16/2018

Today, scientists from of the Institute for Protein Design will join Foldit gamers from around the world to help design an enzyme that can neutralize aflatoxin — a cancer-causing toxin produced by certain fungi that are found on agricultural crops such as corn, peanuts, cottonseed, and tree nuts.  Foldit is a citizen science game version of Rosetta@home, that allows gamers to create new proteins.  Aflatoxin puzzles provide a starting enzyme which has the potential to disarm the toxin, and Gamers from around the world will compete to redesign the enzyme so it can neutralize aflatoxin.

Food safety is a long-standing interest at the Institute for Protein Design.  Our scientists have designed a potent KumaMax enzyme for breaking down gluten, and have launched PvP Biologics to develop it as a therapeutic for treating celiac disease.

David Baker, director of the UW Institute of Protein Design whose lab has been developing FoldIt along with the UW Center for Game Sciences and Seth Cooper at Northeastern, said:  “It has been fascinating to work with FoldIt players over the years and see how they have been able to come up with innovative solutions to challenging problems.  I look forward to seeing the solutions FoldIt players come up with to the important aflatoxin neutralization problem!”

Read more here about World Food Day, Foldit,  Podcast of Scientific American, Aflatoxin.

About Foldit

Foldit is a competitive online puzzle game about protein folding.  It is a crowd-sourcing computer game that allows anyone in the world with a computer and imagination – but not necessarily any scientific training – to determine how amino acids are folded together to create proteins, the workhorses of our bodies.

Inspired by citizen scientists who had a desire to fold proteins on their own, the Foldit game was first released in May 2008, the result of a UW collaboration between David Baker (Director of the Institute for Protein Design), Zoran Popović (Professor of Computer Science), and Seth Cooper (now at Northeastern University).  The first Foldit players had previously volunteered their home computers for the Rosetta@home project to support large scale protein folding calculations for the Baker lab, but these first players wished to do with their minds what their Rosetta@home computer was attempting as viewed through a screen saver.  Since the launch of the Foldit game, players have had a number of notable successes.


2017 IPD Newsletter from David Baker

It was a great year for the Institute for Protein Design and we couldn’t have done all of our amazing work without the support from our donors and contributors! Thank you to everyone who helped us, whether through a donation, collaboration, playing Foldit, or otherwise. We’ve filled the IPD Newsletter with all of the progress we’ve made in 2017, so take a look! In the PDF there are links to articles and publications, but many of them can also be found on either this website, or at Please continue to watch our growth as we head into 2018!

– David

Click here to download the IPD Newsletter Update 2017

Cyrus Raises $8M to Advance Cloud-Based Protein Modeling and Design

Today, the first IPD spin out company Cyrus Biotechnology announced the closing of an $8M total Series A financing. The investment was led by Trinity Ventures, with participation from OrbiMed Advisors, SpringRock Ventures, W Fund, WRF Capital (a major supporter of the IPD), and individual investors.   Congratulations  Cyrus team!

Cyrus is commercializing Cyrus Bench® an innovative user friendly software as a service (SaaS) cloud computing solution for distribution of the powerful “Rosetta” protein structure prediction and design algorithms.

See news in Geekwire, BusinessWire.

The company’s name was inspired by Cyrus Levinthal’s famous paradox, that most small proteins fold spontaneously on short time scales of less than a millisecond, despite there being are a very large number of degrees of freedom in an unfolded protein chain of amino acids, leading to an astronomical number of possible conformations that may need to be sampled before folding into a low energy conformation. The Rosetta suite of algorithms that originated over 17 years ago at the UW, now with a team of over 100+ programmers contributing to the Rosetta Commons, in many cases solves Levinthal’s paradox.

In the last 9 months IPD / Baker lab related Seattle area spin out companies have raised in excess of  $55 million to commercialize innovations in computational protein modeling and design !

The $8M Series A investment in Cyrus, The $12 M Series A investment in Arzeda, and the $35 M direct-to-pharma deal of PvP Biologics with Takeda.


Arzeda Raises $12M for Computational Protein Design

Today, Baker lab spin out company Arzeda announced that it had raised $12 million in a Series A round of funding led by OS Fund and including Bioeconomy Capital and Sustainable Conversion Ventures, as well as a follow-on investment from Arzeda’s seed investor, WRF Capital (a major supporter of the IPD).  The new funding will enable “Technology scale-up that will unlock production of proteins that create sustainable stain-resistant paint, stronger Plexiglas, next-generation sweeteners, and purpose-built molecules that don’t yet exist”

NOTE: Nov. 28, 2017, Arzeda expanded the Series A to $15.2 million, see news.


See news in Xconomy, Geekwire.  Congratulations Arzeda !

The Matrix of Protein Design

The Matrix movie (1999) depicts a future in which the reality perceived by most humans is actually a computer simulated reality called “the Matrix”.  Published today in Sciencethe Baker lab and collaborators report on a new kind of Matrix –  a new reality for large scale computational protein design which can achieve massive data driven improvements in our ability to design highly stable, small proteins from scratch.

Illustration by Gabe Rocklin


Following the White Rabbit, Postdoctoral fellow Dr. Gabe Rocklin led a group of scientists to design and test over 15,000 new mini-proteins (which do not exist in nature) to see whether they form stable folded structures. Even major protein design studies in the past few years have generally examined only 50 to 100 designs.  Synthetic DNA technology and high throughput screening permitted the group to conduct large-scale testing of structural stability of multitudes of computationally designed proteins.  In turn, this allows them to perform a “Global analysis of protein folding using massively parallel design, synthesis and testing“.  

Through iterative improvements in the design process, the group arrived at 2,788 stable mini-protein structures, which is at least 50-fold more proteins than have ever been characterized from natural sources for similar sized proteins.  Their small size and stability may be advantageous for treating diseases when the drug needs to avoid the immune system and reach the inside of a cell.

The publication Abstract is a step into the Matrix as Morpheus explains,

Proteins fold into unique native structures stabilized by thousands of weak interactions that collectively overcome the entropic cost of folding. Though these forces are “encoded” in the thousands of known protein structures, “decoding” them is challenging due to the complexity of natural proteins that have evolved for function, not stability. Here we combine computational protein design, next-generation gene synthesis, and a high-throughput protease susceptibility assay to measure folding and stability for over 15,000 de novo designed miniproteins, 1,000 natural proteins, 10,000 point-mutants, and 30,000 negative control sequences, identifying over 2,500 new stable designed proteins in four basic folds. This scale — three orders of magnitude greater than that of previous studies of design or folding—enabled us to systematically examine how sequence determines folding and stability in uncharted protein space. Iteration between design and experiment increased the design success rate from 6% to 47%, produced stable proteins unlike those found in nature for topologies where design was initially unsuccessful, and revealed subtle contributions to stability as designs became increasingly optimized. Our approach achieves the long-standing goal of a tight feedback cycle between computation and experiment, and promises to transform computational protein design into a data-driven science.

The research has been recognized by opinion leaders and media outlets as a major step for computational protein design.  See articles in Science, Science Daily, Chemistry WorldPhys.orgGEN, and C&E News.



Big Data Shapes the Fold for of Hundreds of Protein Families

Researchers in the Baker lab at the Institute for Protein Design, working in collaboration with the Joint Genome Institute, published in Science the solved folds and structures for hundreds of protein families.   This “big data” approach to large scale protein structure determination was made possible by a team effort that analyzed billions of gene sequences read out from soil, ocean, and air samples collected around the globe.

Figure 1. Protein Structure Determination from Metagenomic Sequence.

The research has been recognized by numerous opinion leaders and media outlets as an unprecedented breakthrough for protein structure prediction. See articles in The Atlantic, The Economist , Science, GeekWire, and GEN.

How does it work?

As illustrated in Figure 1, the sequencing of DNA from environmental samples produces billions of new protein amino acid sequences. Computer algorithms are used to align the sequences according to their evolutionary history. This allows the discovery of pairs of amino acids that co-evolve. If a change occurs in one amino acid, then a compensatory change is typically observed in another amino acid in the sequence. Co-evolving pairs of amino acids are almost always in close proximity to each other (green and yellow lines) within in the final 3D structure of the protein structure (white backbone).

Why is it important?

With this approach, the team produced reliable models for 622 protein families, and discovered more than 100 new protein folds. In addition to resolving the folding structure of a protein, as shown in Figure 2 co-evolution data can also provide data on the dynamic nature of protein structure including transient contacts, protein-protein contacts, and contacts with ligands. Over time, as more environmental DNA sequence data becomes available, we expect to greatly increase our understanding of protein structure, assembly, and function. In turn, we expect this information to enable the design of new proteins with functions.

Figure 2. Important Protein Contacts Inferred from Co-evoling Amino Acid Pairs.

Sharing data.

The Institute for Protein Design believes in sharing its insights with the rest of the world and we have made publicly available the database of protein structures resolved by these methods.


Thank you, Bruce and Jeannie Nordstrom!

A few months ago, it was announced that the Institute for Protein Design is one of UW Medicine’s Priorities in their ACCELERATE campaign. We are grateful to have this support not only from UW Medicine, but also from donors who are contributing funds so that we may continue our work. One such gift came from Bruce and Jeannie Nordstrom, whom we’d like to thank for supporting the IPD’s goal to address challenges in medicine, energy, and technology. Click here to read more about the Nordstrom’s support.

Design of novel cavity containing proteins

An example of computationally designed proteins made of curved beta-sheets and helices forming cavities with different sizes and shapes. (Benjamin Basanta)

The latest paper coming out from the IPD was published today on the Science website. It’s titled “Principles for designing proteins with cavities formed by curved β sheets” with first co-authors Enrique Marcos and Benjamin Basanta, a former and current IPD member, respectively. Other IPD members on the paper include Tamuka Chidyausiku, Gustav Oberdorfer, Daniel-Adriano Silva, Jiayi Dou, and David Baker. Dr. Baker wrote a summary about the publication:

Some of the key functions of the proteins in our bodies and in all living things are to catalyze chemical reactions—speed up the rates by many orders of magnitude-and to sense and respond to small molecules in the body and in the environment.  New proteins that catalyze chemical reactions and/or sense and respond to compounds not found in nature would have wide use in medicine and industry.

Another example of computationally designed proteins made of curved beta-sheets and helices forming cavities with different sizes and shapes (Tamuka Chidyausiku)

Computational protein design can in principle be used to generate such new catalysts and receptors, but a major challenge to accomplishing this has been the inability to design proteins with cavities within which the catalysis or small molecule binding can take place.  This paper describes a general approach for designing proteins with cavities with tunable size and shape. The method opens the door to design of new catalysts and binding proteins [by generating proteins with appropriately sized and shaped cavities to hold the small molecule and lining the cavity with amino acid functional groups to carry out catalysis and/or binding].

Read the UW’s HS NewsBeat write-up here.

PvP Bio Announces $35M agreement with Takeda


Image from PvPBiologics' Twitter
Image from PvPBiologics’ Twitter

On January 5th, recent IPD spin-out PvP Biologics announced their agreement with Takeda Pharmaceutical Company Limited. The $35 million deal includes an option to acquire PvP at a later point. PvP has released a statement on their website, and the agreement was highly covered by other news sources, which can be found at the following:

Puget Sound Business Journal



Business Wire


MedCity News


Read the original post about their spin-out here.

New spinout: PvP Biologics!

We are happy to congratulate Ingrid Swanson Pultz, an IPD Translational Investigator, and Clancey Wolf, a Research Scientist, on PvP Biologics‘ spinout! The news was announced this morning and has been circulated through various outlets. The company, created in 2015, is focusing on advancing KumaMax, a gluten-fighting enzyme that could potentially be taken orally to help those with Celiac disease. To learn more about the announcement, read the full article here.


Unleashing the Power of Synthetic Proteins

Published today in Science Philanthropy Alliance,  David Baker, Director of the Institute for Protein Design describes how the opportunities for computational protein design are endless — with new research frontiers and a huge variety of practical applications to be explored, from medicine to energy to technology.

This is an exciting time as we are undergoing a technological revolution in protein design—rather than simply tweaking proteins that have come through the evolutionary process, we are becoming able to design new proteins from scratch to solve current challenges.

Computationally Designed Barrel Protein, Image by Possu Huang


Hyper-stable Designed Peptides and the Coming of Age for De Novo Protein Design

Small constrained peptides combine the stability of small molecule drugs with the selectivity and potency of antibody-based therapeutics. However, peptide-based therapeutics have largely remained underexplored due to the limited diversity of naturally occurring peptide scaffolds, and a lack of methods to design them rationally.  New computational design and wet lab methods developed at the Institute for Protein Design have now opened the door to rational design of a whole new world of hyper-stable drug-like peptide structures.

In an article published in Nature this week, Baker lab / IPD scientists and their collaborators describe the development of computational methods for de novo design of constrained peptides with exceptional stabilities. They used these computational methods to design 18-47 residue constrained peptides with diverse shapes and sizes. The designed peptides presented in the paper cover three broad categories:

1) genetically encodable disulfide cross-linked peptides,

2) synthetic disulfide cross-linked peptides with non-canonical sequences, and

3) cyclic peptides with non-canonical backbones and sequences.

Experimentally determined structures for these peptides are nearly identical to their design models.

EHEE Designed Peptide, Visual Illustration by Vikram Mulligan. The molecular surface is shown as a transparent blue shell, and the peptide’s backbone structure is pink. The amino acid’s side chains are white (carbon atoms), blue (nitrogen atoms) and red (oxygen atoms). The crisscrossing bonds that give the peptide its constrained, stable shape are in bright white.

By including D-amino acids (mirror images of the L-amino acids), and thus expanding the palette of building blocks, Baker lab scientists designed peptides in a sequence and structure space sampled rarely by Nature. Indeed, the article describes successful design of a cyclic 2-helix peptide of mix chirality that represents a shape beyond natural secondary- and tertiary structure.

These designed peptides also exhibit exceptional stability to thermal and chemical denaturation, and thus could serve as attractive scaffolds for design of novel peptide-based therapeutics. More broadly, development of this new computational toolkit to precisely design constrained peptides opens the door for “on-demand” development of a new generation of peptide-based therapeutics.  See In the Pipeline.

These and other breakthroughs in computational protein design are also covered in a Nature review article by David Baker, Po-Ssu Huang, and Scott E. Boyken entitled “The coming of age of de novo protein design”, part of special supplement on The Protein World.

Illustrations of designed peptides with different configurations of two structures: tightly wound ribbons and flat, arrow-shaped ribbons.
Illustrations of designed peptides with different configurations of two structures: tightly wound ribbons and flat, arrow-shaped ribbons.

See additional news coverage

HS NewsBeat, Hutch News,

Funding Sources

The National Institutes of Health provided partial support for this work through grants P50 AG005136, T32-H600035., GM094597, GM090205, and HHSN272201200025C.  Additional funding was provided by The Three Dreamers.

2016 IPD Newsletter from David Baker

It was a great year for the Institute for Protein Design and we couldn’t have done all of our amazing work without the support from our donors and contributors! Thank you to everyone who helped us, whether through a donation, collaboration, playing Foldit, or otherwise. We’ve filled the IPD Newsletter with all of the progress we’ve made in 2016, so take a look! In the PDF there are links to articles and publications, but many of them can also be found on either this website, or at Please continue to watch our growth as we head into 2017!

– David

Click here to download the IPD Newsletter Update 2016


Designed Protein Containers Push Bioengineering Boundaries

Earlier this month, Baker lab researchers reported the computational design of a hyperstable 60-subunit protein icosahedron in Nature (Hsia et al); icosahedral protein structures are commonly observed in natural biological systems for packaging and transport (e.g. viral capsids). The described design was composed of 60 trimeric protein building blocks that self-assembled in a nanocage.

In new work published today, Baker lab scientists and collaborators have taken this work to an exciting new level by engineering 120-subunit icosahedral nanocages that self-assemble from not one, but two distinct protein components. The new designed proteins are described in the latest issue of Science in a paper entitled “Accurate design of megadalton-scale multi-component icosahedral protein complexes”.

In this paper, former Baker lab graduate student Jacob Bale, Ph.D. and collaborators describe the computational design and experimental characterization of ten two-component protein complexes that self-assemble into nanocages with atomic-level accuracy. These nanocages are the largest designed proteins to date with molecular weights of 1.8-2.8 megadaltons and diameters comparable to small viral capsids. The structures have been confirmed by X-ray crystallography (see figure). The advantage of a multi-component protein complex is the ability to control assembly by mixing individually prepared subunits. The authors show that in vitro mixing of the designed subunits occurs rapidly and enables controlled packaging of negatively charged GFP by introducing positive charges on the interior surfaces of the two copmonents.

The ability to design, with atomic-level precision, these large protein nanostructures that can encapsulate biologically relevant cargo and that can be genetically modified with various functionalities opens up exciting new opportunities for targeted drug delivery and vaccine design. A link to the paper and additional information is below:

Link to PDF can be found here

Featured article and video in Science magazine:

This protein designer aims to revolutionize medicines and materials” – Science

Other related news items:

Virus-inspired contender design may lead to cell cargo ships” – UW Health Sciences NewsBeat

Large Protein Nanocages Could Improve Drug Design and Delivery” – HHMI News

Biggest Little Self-Assembling Protein Nanostructures Created” – DARPA News and Events


Watch a short video about the designed protein nanocages

See specific descriptions on these nanoparticles from Jacob Bale, Neil King, and Yang Hsia

Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling two-component 120-subunit icosahedral protein nanostructures with molecular weights (1.8-2.8 MDa) and dimensions (24-40 nm diameter) comparable to small viral capsids. Electron microscopy, SAXS, and X-ray crystallography show that ten designs spanning three distinct icosahedral architectures form materials closely matching the design models. In vitro assembly of independently purified components reveals rapid assembly rates comparable to viral capsids and enables controlled packaging of molecular cargo via charge complementarity. The ability to design megadalton-scale materials with atomic-level accuracy and controllable assembly opens the door to a new generation of genetically programmable protein-based molecular machines.

Reprinted with permission from AAAS
Reprinted with permission from AAAS

De Novo Design Makes a Splash!


A paper recently published in Science by several members of the IPD, in collaboration with others, entitled “De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity,” discusses designing proteins in a similar way to DNA so that they may be used to engineer structures. Geekwire has written up a great article about the paper; read it here. The abstract is:

General design principles for protein interaction specificity are challenging to extract. In DNA, specificity arises from a limited set of hydrogen-bonding interactions in the core of the double helix to design and build a wide range of shapes. In proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Protein-based materials have the potential for even greater geometric and chemical diversity, including additional functionality. Here we describe a general approach for designing a wide range of protein oligomers that have interaction specificity determined by modular arrays of extensive hydrogen bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen-bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen-bond networks with atomic accuracy enables the programming of protein interaction specificity for a broad range of synthetic biology applications; more generally, our results demonstrate that, even with the tremendous diversity observed in nature, there are fundamentally new modes of interaction to be discovered in proteins.

Watch this video to learn more from Scott Boyken on computational design of hydrogen bond networks in proteins.


Foldit Turns 8!

Over the weekend, Foldit had its 8th birthday! In celebration, they will be tweeting (@Foldit) fun facts and infographics on their feed. Haven’t heard of the game or tried playing it yet? What better time than now! Click here to learn more and to join an ever-growing community that spans the world. Who knows, maybe you’ll be the person who folds the protein that will help create a way to fight disease!


  • FolditIG1_01
  • FolditIG1_02
  • FolditIG1_03

David Baker wins a Leaders in Health Care Award, listed among ‘world’s most influential scientific minds’

We are proud to announce that last week, David was named winner of Seattle Business‘ 2016 Leaders in Health Care Awards for “Outstanding Achievement in Delivery of Digital Health.” The award was one of several given out, with categories ranging from “Lifetime Achievement” to “Outstanding Achievement: Health Care Delivery.” Although David was ill and unable to attend the dinner event, Trisha Davis accepted the award in his place. Seattle Business says this about the awards:

2016_Leaders in Health Care_SB CoverAs technology improves and Americans spend more on treatments to cure or prevent disease and injury, 2016 is likely to be a challenging year in health care. Doctors, nurses and clinicians are learning to work in new and innovative ways as consumers rely on video consults and their smartphones as diagnostic tools.

The 18 honorees in Seattle Business magazine’s 2016 Leaders in Health Care Awards are up to the challenge. All are champions for change, compassionate visionaries who believe in better patient care. They are harnessing technology, tackling the unknown and solving scientific puzzles — all in the name of promoting health and lowering costs.

They are forward thinkers who excel in the delicate balancing act involving the health, lives and resources of consumers. Congratulations to this year’s honorees for their commitment to ensuring Washington’s health care industry remains at the forefront of worldwide achievement.

There is also a separate article about David here.

Additionally, back in January, David was listed amongst Thomas Reuters’ list of “World’s Most Influential Scientific Minds” for 2015. He was one among 27 UW faculty members that made the list, which is determined by most citations by peers for various fields. You can read the UWToday article here. David was selected for biology and biochemistry.

Flu Binder Paper Debuts in PLOS Pathogens

Today at 11am, the paper titled “A Computationally Designed Hemagglutinin Stem-Binding Protein Provides In Vivo Protection from Influenza Independent of a Host Immune Response” was published to the PLOS Pathogen website. This paper was contributed to by several IPD members, including Aaron Chevalier, Jorgen Nelson, Lance Stewart, Lauren Carter, and David Baker. The research was performed in collaboration with colleagues in Deborah Fuller’s lab at UW’s Department of Microbiology. You can find the paper here. Scroll down for the official press release.

FluBinder Rendered by Vikram Mulligan, PhD
FluBinder Rendered by Vikram Mulligan, PhD

Fighting Flu with Designer Drugs: A New Compound Given Before or After Exposure Fends Off Different Influenza Strains

A study published on February 4th in PLOS Pathogens reports that a new antiviral drug protects mice against a range of influenza virus strains. The compound seems to act superior to Oseltamivir (Tamiflu) and independent of the host immune response.
Influenza viruses under the microscope look a bit like balls covered with spikes. The spikes are actually two different proteins, hemagglutinin (HA) and neuraminidase (NA). Both proteins consist of an inner stem region (which doesn’t differ much between flu strains), and a highly variable outer blob. The individual variants fall into designated groups, and this is how flu strains are categorized (for example as H1N1, or H3N5).
Ongoing mutations that change the HA and NA blobs are the reason why flu vaccines differ from season to season; they are based on researchers’ best guesses of what next year’s prominent strains will look like. And dangerous pandemic strains often have radically new blobs against which existing immunity is limited.
In the search for drugs that act broadly against different influenza strains, researchers had previously shown that antibodies against the HA stem region can prevent influenza infection. Such antibodies are protective, at least in part, because they activate the host immune response which then destroys the whole HA/antibody complex. The approach, then, depends on a fully functional immune system—which is not present in infants, the elderly, or immune-compromised individuals.
Inspired by the earlier work, Deborah Fuller from the University of Washington in Seattle, USA, who is interested in developing influenza drugs and vaccines, teamed up with David Baker, also at the University of Washington, who is an expert in computational protein design. Together with colleagues, they set out to design small molecules that—like the protective antibodies—bind to the HA stem, and to test whether these small molecules can protect against influenza infection. Designed to mimic antibodies, the small molecules bind the virus in a similar manner. However, because they don’t engage the immune system the way antibodies do, and because of questions of stability and potency, it was not clear whether they would be able to prevent infection in animals, or eventually, in humans.
Before testing their molecules in animals, the researchers optimized their favorite small molecule candidate by systematically generating thousands of versions and testing how tightly they bound HA stems from seven different influenza strains. As they predicted, the resulting molecule, called HB36.6, protected cells against influenza virus infection in vitro (i.e., in test tubes).
The researchers next tested HB36.6 in “challenge experiments” in mice. They gave mice a single intranasal dose of the drug and 2 hours, 24 hours, or 48 hours later injected them with a normally lethal dose of influenza virus. This one-time HB36.6 treatment, when given up to 48 hours before the challenge, conveyed complete protection: All of the treated mice survived and had little weight loss, whereas all untreated control mice died after losing a third of their body weight or more. Intranasal HB36.6 was also able to protect mice after they had been exposed to flu virus, when administered either as a single dose within a day after exposure, or when it was given daily for four days starting 24 hours after exposure.
This protection does not depend on an intact host immune response. When the researchers repeated the challenge experiments in two different immune-deficient mouse strains, they found that HB36.6 can protect these mice as well.
Comparing HB36.6 with Oseltamivir, the researchers found that a single dose of HB36.6 provided better protection than 10 doses (twice daily for 5 days) of Oseltamivir. Furthermore, when they gave a low dose of HB36.6 post-infection (which by itself was not able to afford full protection) together with twice-daily doses of Oseltamivir, all the mice survived, indicating a synergistic effect when the two antiviral drugs are combined.
Their results, the researchers conclude, “show that computationally designed proteins have potent anti-viral efficacy in vivo and suggests promise for development of a new class of HA stem-targeted antivirals for both therapeutic and prophylactic protection against seasonal and emerging strains of influenza”.

Dr. Ingrid Swanson Pultz on UW Medicine Pulse

Recently, UW Medicine Pulse released a podcast featuring none other than our very own Ingrid Swanson Pultz! They talked to her about KumaMax and how it would help those with Celiac’s disease. Go here to see their post on it and listen to the podcast!

Would you like to contribute to her research? Please go here to give a gift that will help further her work.

Big moves in protein structure prediction and design

[envira-gallery id=”3246″]

Custom design with atomic level accuracy enables researchers to craft a whole new world of proteins

Naturally occurring proteins are the nanoscale machines that carry out essentially all of the critical functions in living things.

While it has been known for over 40 years that the sequence of amino acids completely determines the shape of the protein, it has been very challenging to predict from the amino acid sequence of the protein its three-dimensional structure, and conversely, to come up with brand new amino acid sequences which fold up into hitherto unseen structures.

Over the past months, scientists at the Institute for Protein Design at the University of Washington and the Fred Hutch, along with colleagues at other institutions, have reported advances in two long-standing problem areas related to the construction of new proteins from scratch.

“It has been a watershed year for protein structure prediction and design,” said UW Medicine researcher David Baker, a University of Washington professor of biochemistry, Howard Hughes Medical Institute investigator and head of the Institute for Protein Design.

The protein structure problem is about figuring out how a protein’s chemical makeup predetermines its molecular structure, and in turn, its biological role.   UW researchers have developed powerful new algorithms using co-evolution data from DNA sequences to make unprecedented highly accurate blind ‘ab initio’ structure predictions of large proteins (>200 amino acids in length). This has opened the door to accurate prediction of the structures for hundreds of thousands of newly discovered proteins in the ocean, soil, and gut microbiome.

Equally difficult is the second problem, which is designing amino acid sequences that will fold into brand new protein structures. Breakthroughs demonstrate that it is now possible to make brand new amino acid sequences with exacting precision for folds inspired by the natural world; and more importantly to make amino acid sequences from scratch for totally novel unknown folds, far surpassing what is predicted to occur in natural proteins.

The new proteins are designed with the help of volunteers around the world participating in the Rosetta@Home distributed computing project. The designed amino acid sequences are encoded in synthetic genes, the proteins are produced in the laboratory, and their structures determined with X-ray crystallography.   The computer models in almost all cases match the experimentally determined crystal structures with near atomic level accuracy.

Researchers report new protein designs for barrels, sheets, rings, and screws –all with near atomic level accuracy. This builds on previous reports of designed protein cubes and spheres; providing proof that it is possible to make a totally new class of protein materials.

With these advances in both protein structure prediction and molecular design, Institute for Protein Design researchers hope to build a new world of proteins with exact specifications for performing critically needed tasks in medical, environmental and industrial arenas.

Examples of their goals are nanoscale tools that:

boost the immune response against HIV and other recalcitrant viruses

block the flu virus so that it can’t infect cells

deliver drugs to cancer cells with precision and reduced side effects

stop allergens from causing symptoms

neutralize deposits, called amyloids, thought to damage vital tissues in Alzheimer’s disease

mop up medications in the body as an antidote

fulfill other diagnostic, therapeutic, and clean energy needs

Just as the manufacturing industry was revolutionized by creating interchangeable parts designed to precise specifications, custom designed protein modules with the right twist, turns, and connections for their modular assembly is a bold new direction for biotechnology.

Results providing proof of this possible future have been reported in recent months by researchers the UW Institute for Protein Design in collaboration with researchers at the Fred Hutch, Max Planck Institute for Developmental Biology, Janelia Research Campus, and the Institute for Molecular Science in Japan.



Evolution offers clues to shaping proteins: The function of many proteins tends to stay the same across species, even after their amino acid sequences have changed over billions of years of evolution. Locating co-evolved pairs of amino acids helps calculate their proximity when the molecule folds. UW graduate student Sergey Ovchinnikov applied this co-evolution DNA sequence analysis in an E-Life paper published on September 3, 2015 entitled “Large-scale determination of previously unsolved protein structures using evolutionary information” that illuminated for the first time the structures of 58 families of proteins containing hundreds of thousands of additional structurally related family members.

“This achievement was a grand slam home run in the history of protein structure prediction,” said Baker.



Modular construction of proteins with repeating motifs: Proteins composed of repeated modules, similar to interlocking Lego® blocks, are common in the natural world. Two papers published in the December 16 issue of Nature entitled, “Exploring the repeat protein universe through computational protein design,” and “Rational design of alpha-helical tandem repeat proteins with closed architectures,” shows that existing repeat proteins occupy only a small fraction of the available space, and that it is possible to design totally new proteins with precisely specified geometries that go far beyond what nature has achieved. The work was led by postdoctoral fellows TJ Brunette, Fabio Parmeggiani and Po-Ssu Huang in the lab of David Baker at the University of Washington Institute for Protein Design and Lindsey Doyle and Phil Bradley at the Fred Hutchinson Cancer Research Institute in Seattle.



Barrel-fold design: , Baker lab postdoctoral fellow Po-Ssu Huang, together with Birte Höcker at the Max Planck Institute for Developmental Biology (Tübingen, Germany) discovered the critical but elusive design principles for a barrel-shaped fold underpinning many natural enzyme molecules. The custom designed barrels folds were built at the Institute for Protein Design and reported on November 23, 2015 in the Nature Chemical Biology paper, “De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy.” This breakthrough has opened the door for bioengineers to generate totally new enzymes that speed up chemical reactions by positioning smaller molecules in custom barrel compartments.

Self-assembling apparatus: Naturally occurring ordered protein arrays along a flat plane are found in bacteria, the heart, and other muscles. Overcoming protein interaction complexities, researchers at UW Institute for Protein Design and the Janelia Research Campus of the Howard Hughes Medical Institute succeeded in programming proteins to self-assemble into novel symmetric, 2-dimensional sheets of protein lattice patterns. UW graduate student Shane Gonen in the Baker lab together with his brother Tamir Gonen at Janelia described their work in the June 19, 2015 issue of Science, “Design of ordered two-dimensional arrays mediated by non-covalent protein-protein interfaces.” This research has application in the design self-assembling protein nanomaterials, especially those that could serve as efficient sensors or light harvesters.

Precision sculpting: Protein designers are continuously refining the principles for fashioning ideal protein structures. The latest paper in the October 6, 2015 Proceedings of the National Academy of Sciences, “Control over overall shape and size in de novo designed proteins” further explains methods for systematically varying protein architecture inspired by nature. Such finesse is needed in optimizing designed proteins to take on exact shapes to perform specified functions.   This work has been led by Baker lab graduate student Yu-Ru Lin in collaboration with Nobuyasu Koga at the Institute for Molecular Science in Japan.

Funding Sources:

The Institute of Protein Design has been funded by several federal agencies, including National Institutes of Health, U.S. Department of Energy, National Science Foundation, U.S. Defense Threat Reduction Agency, and U.S. Air Force Office of Scientific Research, the Washington Research Foundation, the Life Sciences Discovery Fund, as well as through private support.

The Institute also depends on a cadre of citizen scientists around the world who volunteer their personal and computer time for protein folding prediction studies through Rosetta@home and the multi-player on-line protein folding game Foldit.


A similar story was also published in UW Health Science’s Newsbeat. Read it here.

CASP3-11 Results Published in E-Life

In the early 1990s, researchers in the field of protein structure prediction were challenged by the problem of how to impartially judge the accuracy of prediction algorithms.  This realization led the protein structure prediction the community to start the Critical Assessment of protein Structure Prediction (CASP), a community-wide, worldwide experiment for protein structure prediction taking place every two years since 1994.   In each CASP, an independent scientific advisory board solicits other researchers to submit experimentally verified, but unpublished, 3D protein structures to CASP.   The linear amino acid sequences of these proteins are then provided to structure prediction researchers, who each have an equal and limited amount of time to submit final structure predictions to the CASP advisory board.  The submitted structure predictions are then compared to the experimentally verified structures using the same metrics for all CASP contributors.  Even though the primary goal of CASP is to help advance methods for identifying protein 3D structure given only its linear amino acid sequence, many view the experiment more as a “world championship” in protein structure prediction.

Over a 16 year period (CASP3-11), the Baker lab has consistently achieved top performance in the hardest category of structure prediction; the “Twilight Zone” where the linear amino acid sequence of the protein shares no discernable relation to any publicly available 3D structure. In 2014 this culminated in our highly accurate blind structure predictions of two large proteins each >200 amino acids in length. Our methods involve using DNA sequence information to help us predict the 3D structures of proteins.

We recently published these results in E-life, and the results are getting significant attention.

You can read the general-public summary here:

Or find the whole thing here:

Also, learn about the first author of the paper, Sergey Ovchinnikov, by watching this interview:

Join the IPD!

We are looking for people to join us to help achieve our goal “to engineer a whole new world of synthetic proteins that address 21st century challenges in medicine, energy, and technology.” Interested? Read on!



The newest faculty to join the IPD, Liangcai Gu, PhD, is actively recruiting postdoc fellows to work on protein barcoding and in situ DNA sequencing technologies for protein design. Learn more by clicking here and going to the “Gu Lab – Postdoctoral Fellow” tab.



The WRF Innovations Fellows Program is accepting applications until January 15th, 2016. Go here for more details.


September IPD News Roundup



IPD Translational Investigator, Dr. Ingrid Pultz, published a paper in JACS  this month titled ‘Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades Immunogenic Gliadin Peptides in Gastric Conditions‘.Kuma030 Using Rosetta to redesign the active site of the gliadin protease KumaMax – an enzyme computationally designed to break down gluten in the stomach – Dr. Pultz and collaborators show that the new variant Kuma030 degrades >99% of the gluten peptide that triggers inflammation in celiac disease patients. This work brings us even closer to arriving at an oral therapeutic for celiac disease.


Dr. Pultz was interviewed by on her work developing a pill that celiac patients can take before consuming gluten. Read and hear more at the link:


The IPD hosted its second Scientific Council meeting this month, chaired by David Urdal, PhD, MS. The council is made up of UW and Fred Hutch faculty from a variety of departments (Oncology, Genome Sciences, Immunology, Allergy & Infectious Diseases, Biochemistry, and Pharmacology). The goal of the IPD Scientific Council is threefold:
1. Identify new opportunities, targets, and applications to which protein design can be applied
2. To strategize on how best to balance core technology development with translational projects of value today and translational projects with important impacts 5 to 10 years down the road
3. Provide feedback on current projects

IPD Director Dr. David Baker was the Keynote speaker at the 13th Annual NanoDDS (International Nanomedicine and Drug Delivery) symposium, held at the UW this year. Dr. Baker gave a talk entitled ‘Engineering Protein Nanocarriers: Deisgn of protein interaction inhibitors and self-assembling nanocages’.

Dr. Baker also spoke on a panel at the Washington State Academy of Sciences 8th Annual Symposium on “Accelerating Science’s Impact: Translating Discoveries Into Solutions”. Held at the Museum of Flight, the panel was moderated by UW CoMotion Executive Director Vikram Jandhlaya and panelists discussed various topics under the theme of “Translational Science for Health and Disease Barriers and Solutions”.

August IPD News Roundup



Following the groundbreaking 2014 Nature paper describing the development of a computational method to design multi-component coassembling protein nanoparticles, comes a publication in Protein Science from Baker lab graduate student Jacob Bale and collaborators. Titled “Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression“, the paper reports a variant of a previously low yielding tetrahedral designed material for which structure determination was difficult. The new variant described in the paper had a much improved yield after redesign and the structure obtained agreed with the computational model with high atomic-level accuracy. The methods used here to improve soluble protein yield will be generally applicable to improving the yield of many designed protein nanomaterials.



Congratulations to newly minted PhDs and graduates of the Baker lab Dr. Shawn Yu and Dr. Ray Wang! Both defended their dissertations this month. Dr. Yu gave a talk on “Computational design of interleukin-2 mimetics” and Dr. Wang spoke about “Protein structure determination from cryoEM density maps”. We wish them the best of the luck in their next steps!

The annual RosettaCON meeting was held July 29-Aug1 at the beautiful Sleeping Lady Mountain Resort in Leavenworth, WA. Many IPD scientists attended the conference, heard talks from researchers in Rosetta labs across the country, presented posters on their own research, and socialized with the larger Rosetta community.

Translational Investigator awarded LSDF Matching Grant Award for Celiac Disease Therapy

Ingrid Swanson-PultzSlide18







Please make a tax deductible donation at this LINK. 

IPD Translational Investigator Dr. Ingrid Swanson Pultz was awarded a Matching Grant award of $250K from the Life Sciences Discovery Fund (LSDF) for her project ‘In vivo assessment of an oral therapeutic for celiac disease‘!

We need to raise an additional $74K to make the full match.

Learn more about this project by watching this short  video.

For more information, watch this longer WBBA video, interview with Ingrid, and look this slide presentation.

The goal of this LSDF funded research is to assess the efficacy, safety, and optimal dosing of KumaMax and its variants as an oral enzyme therapy for celiac disease.

KumaMax is the winner of the 2013 Innovation Award at the UW.   KumaMax is a computationally designed enzyme which efficiently breaks down gluten in the stomach before it reaches the small intestine where it can cause inflammation in celiac disease patients.

The LSDF Matching Grant has the requirement that the UW must raise an additional 1:1 match of $250K to support this innovative project.

We need your support !  The Institute for Protein Design has received $176K in matching funds from generous philanthropists to support this work.

Every $ counts.  We thank everyone for their generous support.


Designer Proteins to Target Cancer Cells

BINDI Designer Protein What if scientists could design a completely new protein that is precision-tuned to bind and inhibit cancer-causing proteins in the body? Collaborating scientists at the UW Institute for Protein Design (IPD) and Molecular Engineering and Sciences Institute (MolES) have made this idea a reality with the designed protein BINDI. BINDI (BHRF1-INhibiting Design acting Intracellularly) is a completely novel protein, based on a new protein scaffold not found in nature, and designed to bind BHRF1, a protein encoded by the Epstein-Barr virus (EBV) which is responsible for disregulating cell growth towards a cancerous state. Learn more here.

Accurate Design of Co-Assembling Multi-Component Protein Nanomaterials

TwoComponentthumbnailA new paper is out in the June 5 issue of Nature entitled Accurate design of co-assembling multi-component protein nanomaterials. Scientists at the Institute for Protein Design (IPD), in collaboration with researchers at UCLA and HHMI, have built upon their previous work constructing single-component protein nanocages and can now design and build self-assembling protein nanomaterials made up of multiple components with near atomic-level accuracy. Learn more about this innovative work at this link.

Computational Design of a pH Sensitive Antibody Binder

Designed pH-dependent Fc binder (blue) exploits protonation of Histidine-433 (orange) in the Fc portion Immunoglobulin G (IgG, light cyan surface)

Purification of antibody IgG from crude serum or culture medium is required for virtually all research, diagnostic, and therapeutic antibody applications.  Researchers at the Institute for Protein Design (IPD) have used computational methods to design a new protein (called “Fc-Binder”) that is programed to bind to the constant portion of IgG (aka “Fc” region) at basic pH (8.0) but to release the IgG at slightly acidic pH (5.5).  Published on-line at PNAS (Dec. 31, 2013), the paper is entitled Computational design of a pH-sensitive IgG binding protein, co-authored by Strauch, E. – M., Fleishman S. J., & Baker D.  Learn more at this link.

KumaMax: Winner of C4C Recognition as a Novel Oral Therapeutic for Celiac Disease


Dr. Ingrid Swanson Pultz wins first prize at C4C's 2013 Innovators Recognition Event

Dr. Ingrid Swanson Pultz, a Translational Investigator at the Institute for Protein Design won first prize at the UW Center for Commercialization 2013 Innovator Recognition Event, for KumaMax, an enzyme designed in the Baker lab to efficiently break down gluten within the acidic environment of the stomach, before it can reach the small intestine where intact gluten may otherwise cause an inflammatory reaction in people who suffer from celiac disease.  Learn more at this link.

Computational Design Of A Protein That Binds Polar Surfaces

Enzyme Inhibitor DesignIn a Journal of Molecular Biology publication entitled Computational design of a protein-based enzyme inhibitor, Dr. Erik Procko and collaborators describe the computational design of a protein-based enzyme inhibitor that binds the polar active site of hen egg lysosome (HEL).  Computational design of a protein that binds polar surfaces has not been previously accomplished.  Learn more at this link.

Life Sciences Discovery Fund Awards $1.4M to the Institute for Protein Design

LSDFThe Life Sciences Discovery Fund  (LSDF) today announced its latest round of Opportunity Grants, and awarded $1.4 M to the University of Washington (UW) to “Launch of the Institute for Protein Design for Creating New Therapeutics, Vaccines and Diagnostics.”   This LSDF Opportunity Grant Award will enable the IPD Translational Investigators to improve upon protein design discoveries so that they may one day become viable solutions to real-life challenges.  UPDATE April 2014: The LSDF funding to the IPD was matched 4-fold by generous contributions from private donors ($3.2 M), UW ($1.4 M), and the Washington Research Foundation ($1 M).  Learn more at this link.

IPD Researchers Publish New Protocols for Preparing Protein Scaffold Libraries for Functional Site Design

Pareto-optimal refinementIPD researchers in the Baker group have published new computational protocols for preparing protein scaffold libraries for functional site design.  Their paper entitled “A Pareto-optimal refinement method for protein design scaffolds improves the search for amino acids with the lowest energy subject to a set of constraints specifying function.  Learn more at this link.

Centenary Award and Frederick Gowland Hopkins Memorial Lecture

Centenary Award LectureDr. David Baker, Director of the IPD delivered the Centenary Award and Frederick Gowland Hopkins Memorial Lecture at  at the MRC Laboratory of Molecular Biology, Cambridge, UK, on December, 13, 2012.   Baker’s lecture entitled “Protein folding, structure prediction and design”  can be read at this published link.  

See:  Baker, D. (2014).  Protein folding, structure prediction and design.. Biochemical Society transactions. 42(2), 225-9.

Proteins Made to Order. Researchers at the IPD Design Proteins from Scratch with Predictable Structures

Design of Ideal Folded ProteinsA team from David Baker’s laboratory at the University of Washington in Seattle have described a set of “rules” for the design of proteins from scratch, and have demonstrated the successful design of five new proteins that fold reliably into predicted conformations.  Their work was published Nature.  Learn more at this link.

Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy

Self Assembling NanomaterialsIPD researchers in the Baker group have published in Science a paper entitled “Computational design of self-assembling protein nanomaterials with atomic level accuracy.”  They describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture.  Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly.  Read more at this link.