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The binding and catalytic functions of proteins are generally mediated by a small number of
functional residues held in place by the overall protein structure. Here, we describe deep learning
approaches for scaffolding such functional sites without needing to prespecify the fold or secondary
structure of the scaffold. The first approach, “constrained hallucination,” optimizes sequences
such that their predicted structures contain the desired functional site. The second approach,
“inpainting,” starts from the functional site and fills in additional sequence and structure to create a
viable protein scaffold in a single forward pass through a specifically trained RoseTTAFold network.
We use these two methods to design candidate immunogens, receptor traps, metalloproteins,
enzymes, and protein-binding proteins and validate the designs using a combination of in silico
and experimental tests.

T
he biochemical functions of proteins are
often carried out by a subset of residues
that constitute a functional site—for ex-
ample, an enzyme active site or a protein
or small-molecule binding site—andhence

the design of proteins with new functions
can be divided into two steps. The first step
is to identify functional site geometries and
amino acid identities that produce the desired
activity—for enzymes, this can be done using
quantum chemistry calculations (1–3), and for
protein binders, by fragment docking calcu-
lations (4, 5). Alternatively, functional sites can
be extracted from a native protein having the
desired activity (6, 7). Here, we focus on the
second step: Given a functional site descrip-
tion from any source, design an amino acid
sequence that folds up to a three-dimensional
(3D) structure containing the site. Previous
methods can scaffold functional sites made
up of one or two contiguous chain segments
(6–10), but,with the exceptionof helical bundles

(8), these donot extend readily tomore complex
sites composed of three or more chain seg-
ments, and the generated backbones are not
guaranteed to be designable (i.e., encodable by
some amino acid sequence).
An ideal method for functional de novo pro-

tein designwould (i) embed the functional site
with minimal distortion in a designable scaf-
fold protein; (ii) be applicable to arbitrary site
geometries, searching over all possible scaffold
topologies and secondary structure compo-
sitions for those optimal for harboring the
specified site; and (iii) jointly generate back-
bone structure and amino acid sequence. We
previously demonstrated that the trRosetta
structure-prediction neural network (11) can
be used to generate new proteins by maxi-
mizing the trRosetta output probability that
a sequence folds to some (unspecified) 3D struc-
ture duringMonte Carlo sampling in sequence
space (12). We refer to this process as “hal-
lucination,” as it produces solutions that the
network considers to be ideal proteins but
that do not correspond to any known natural
protein; crystal and nuclear magnetic reso-
nance structures confirm that the hallucinated
sequences fold to the hallucinated structures
(12). trRosetta can also be used to design se-
quences that fold into a target backbone struc-
ture by carrying out sequence optimization
using a structure recapitulation loss function
that rewards similarity of the predicted struc-
ture to the target structure (13). Given this
ability to design both sequence and struc-
ture, we reasoned that trRosetta could be
adapted to tackle the functional site scaffold-
ing problem.

Partially constrained hallucination using a
multiobjective loss function
To extend existing trRosetta-based design
methods to scaffold functional sites (Fig. 1A),
we optimized amino acid sequences for fold-
ing to a structure containing the desired func-
tional site using a composite loss function that
combines the previously used hallucination loss
with a motif reconstruction loss over the func-
tional motif [rather than the entire structure,
as in (13)] (Fig. 1B; see materials andmethods
in the supplementary materials). Although
we succeeded in generating structures with
segments closely recapitulating functional sites,
Rosetta structure predictions suggested that
the sequences poorly encoded the structures
(fig. S1A), and hence we used Rosetta design
calculations to generate more-optimal se-
quences (14). Several designs targeting pro-
grammed cell death ligand 1 (PD-L1) generated
by constrained hallucination with binding
motifs derived from programmed cell death
protein 1 (PD-1) (table S1) (15), followed by
Rosetta design, were found to have binding
affinities in the mid-nanomolar range (fig. S1,
B to E). Although this experimental valida-
tion is encouraging, the requirement for se-
quence design using Rosetta is inconsistent
with the aim of jointly designing sequence
and structure.
Following the development of RoseTTAFold

(RF) (16), we found that it performed better
than trRosetta in guiding protein design by
functional site–constrained hallucination (fig.
S1G), likely reflecting the better overall mod-
eling of protein sequence-structure relation-
ships (16). Constrained hallucination with
RoseTTAFold has the further advantages that,
because 3D coordinates are explicitly modeled
(trRosetta only generates inter-residue distances
and orientations), site recapitulation can be as-
sessed at the coordinate level and additional
problem-specific loss terms can be implemented
in coordinate space that assess interactions
with a target (fig. S2; materials andmethods).

Generalized functional motif scaffolding by
missing information recovery

While powerful and general, the constrained
hallucination approach is compute-intensive,
as a forward and backward pass through the
network is required for each gradient descent
stepduring sequence optimization. In the train-
ing of recent versions of RoseTTAFold, a subset
of positions in the input multiple sequence
alignment are masked, and the network is
trained to recover this missing sequence in-
formation in addition to predicting structure.
This ability to recover both sequence and struc-
tural information provides a second solution to
the functional site scaffolding problem:Given
a functional site description, a forward pass
through the network can be used to com-
plete, or “inpaint,” both protein sequence and
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structure in a masked region of protein
(Fig. 1C; materials and methods). Here, the
design challenge is formulated as an infor-
mation recovery problem, analogous to the
completion of a sentence given its first few
words using language models (17) or the
completion of corrupted images using in-
painting (18). A wide variety of protein struc-
ture prediction and design challenges can be
similarly formulated as missing information
recovery problems (Fig. 1D). Although protein
inpainting has been explored before (19, 20),
in this studywe approach it using the power of
a pretrained structure-prediction network.
We began from a RoseTTAFold (RF) mod-

el trained for structure prediction (16) and

carried out further training on fixed-backbone
sequence design in addition to the standard
fixed-sequence structure prediction task to
avoid model degradation (fig. S3; materials
and methods). This model, denoted RFimplicit,
was able to recover small, contiguous regions
missing both sequence and structure (fig. S3).
Encouraged by this result, we trained a model
explicitly on inpainting segmentswithmissing
sequence and structure given the surrounding
protein context, in addition to sequence design
and structure prediction tasks (fig. S4A; mate-
rials and methods and algorithm S1). The re-
sulting model was able to inpaint missing
regions with high fidelity (Fig. 1E and fig. S4)
and performed well at sequence design (32%

native sequence recovery during training) and
structure prediction (fig. S4C). We call this net-
work RFjoint and use it to generate all inpainted
designs below unless otherwise noted.
To evaluate in silico the quality of designs

generated by ourmethods,weuse theAlphaFold
(AF) protein structure prediction network (21),
which has high accuracy on de novo designed
proteins (22) (fig. S7A). RF and AF have dif-
ferent architectures and were trained inde-
pendently, and hence AF predictions can be
regarded as a partially orthogonal in silico test
of whether RF-designed sequences fold into
the intended structures, analogous to tradi-
tional ab initio folding (13, 23). We used AF
to compare the ability of hallucination and
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Fig. 1. Methods for protein function design.
(A) Applications of functional-site scaffolding.
(B and C) Design methods. (B) Constrained
hallucination. At each iteration, a sequence is
passed to the trRosetta or RoseTTAFold neural
network, which predicts 3D coordinates and
inter-residue distances and orientations (fig. S2).
The predictions are scored by a loss function
that rewards certainty of the predicted structure
along with motif recapitulation and other task-
specific functions. MCMC, Markov chain Monte Carlo.
(C) Missing information recovery (“inpainting”).
Partial sequence and/or structural information is
input into a modified RoseTTAFold network (called
RFjoint), and complete sequence and structure are
output. (D) Protein design challenges formulated as
missing information recovery problems. Question
marks in column 1 indicate missing sequence
information; gray cartoons in column 2, missing
structural information. (E) RFjoint can simultaneously
recover structure and sequence of a masked protein
region. 2KL8 was fed into RFjoint with a continuous
(length 30) window of sequence and structure
masked out, with the network tasked with predicting
the missing region of protein. Outputs (inpainted
region in gray) closely resemble the original protein
(2KL8, left) and are confidently predicted by
AlphaFold (pLDDT/motif RMSD of models shown,
from left to right: 91.6/0.91, 92.0/0.69, and 90.4/
0.82). (F and G) Motif scaffolding benchmarking
data comparing RFjoint with constrained hallucina-
tion. A set of 28 de novo designed proteins,
published since RoseTTAFold was trained, were
used. For each protein, 20 random masks of length
30 were generated, and RFjoint and hallucination were
tasked with filling in the missing sequence and
structure to “scaffold” the unmasked “motif.” For
this mask length, RFjoint typically modestly outper-
forms hallucination, both in terms of the RMSD of
the unmasked protein (the “motif”) to the original
structure (F) and in AlphaFold confidence (pLDDT
in the replaced region) (G). Circles represent
average of 20 outputs for each of the bench-
marking proteins. Triangle represents 2KL8. Colors
in all panels: native functional motif, orange;

hallucinated/inpainted scaffold, gray; constrained motif, purple; binding partner, blue; nonmasked region, green; and masked region, light-gray dotted lines.
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inpainting to rebuild missing protein regions
(Fig. 1, F andG, and fig. S5). Inpainting yielded
solutions withmore accurately predicted fixed
regions (“AF-RMSD”; Fig. 1G and fig. S5B) and
structures overall more confidently predicted
from their amino acid sequences (“AF pLDDT”;
Fig. 1F and fig. S5A) and required only 1 to 10 s
per design on an NVIDIA RTX 2080 graphics
processing unit (hallucination requires 5 to
20 min per design). However, hallucination
gave better results when the missing region
was large (fig. S5) and generated greater struc-
tural diversity (fig. S8; and see below).
In the following sections, we highlight the

power of the constrained hallucination and
inpainting methods by designing proteins
containing a wide range of functional motifs
(Figs. 2 to 5 and table S1). For almost all
problems, we obtained designs that are closely
recapitulated by AF with overall and motif
(functional site) root mean square deviation
(RMSD) of typically <2 and <1 Å, respectively,
with high model confidence [predicted local
distance difference test (pLDDT) > 80; table
S2]; such recapitulation suggests that the
designed sequences encode the designed
structures [although it should be noted that
AF has limited ability to predict protein sta-
bility (24) or mutational effects (25, 26)]. More

critically, we assessed the activities of the
designs experimentally (with the exception of
those labeled “in silico” in Figs. 2 to 5).

Designing immunogen candidates and
receptor traps

The goal of immunogen design is to scaffold
a native epitope recognized by a neutralizing
antibody as accurately as possible in order to
elicit antibodies binding the native protein
upon immunization. Additional interactions
with the antibody are undesirable because the
aim is to elicit antibodies recognizing only the
original antigen, and hence for hallucination,
we add a repulsive loss term to penalize in-
teractions with the antibody beyond those
present in the scaffolded epitope (fig. S2; sup-
plementary text). As a test case, we focused on
respiratory syncytial virus F protein (RSV-F),
which has several antigenic epitopes for which
structures with neutralizing antibodies have
been determined (7, 9, 10). We scaffolded
RSV-F site II, a 24-residue helix-loop-helix
motif that had previously been grafted suc-
cessfully onto a three-helix bundle (7), as well
as RSV-F site V, a 19-residue helix-loop-strand
motif that has not yet been scaffolded success-
fully (27). We were able to hallucinate designs
recapitulating both epitopes to sub-angstrom

backbone RMSD in a variety of folds [Fig. 2A
and fig. S9; structures and sequences for all
designs below are given in data S1 and S2 and
differ considerably from native proteins (table
S2); RF hallucinated models and AF structure
predictions are shown in figs. S9, S11, and S17;
only theAFmodel is shown in themain figures].
Inpainting also generated scaffolds for RSV-F
site V, with comparable quality but less diver-
sity than the hallucinations (fig. S8).
We expressed 37 hallucinated RSV-F site V

scaffolds with high AF pLDDT and lowmotif
AF-RMSD in Escherichia coli and found that
three bound the neutralizing antibody hRSV90
(27) with a dissociation constant (Kd) of 0.9
to 1.3 mM (Fig. 2C and fig. S11; materials and
methods and supplementary text). The Kd for
the RSVF trimer is lower (23 nM), but the
interface is larger, encompassing both sites II
and V (27). Mutation of either of two key epi-
tope residues reduced or abolished binding of
the designs, suggesting that they bind the target
through the scaffolded motif (Fig. 2C and fig.
S11A), and circular dichroism (CD) spectra were
consistent with the designed scaffold structures
for both the original hallucinations (Fig. 2D)
and the epitope mutants (fig. S11C). Four of
the inpainted designs bound hRSV90 by yeast
display but were poorly expressed in E. coli
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Fig. 2. Design of epitope
scaffolds and receptor traps.
(A) Design of proteins scaffolding
immunogenic epitopes on RSV
protein F (site II: PDB ID 3IXT chain P
residues 254 to 277; site V: PDB ID
5TPN chain A residues 163 to 181).
Comparisons of the RF hallucinated
models to AF2 structure predictions
from the design sequence are in
fig. S9; here, because of space
constraints, we show only the AF2
model (the two are very close in
all cases). Here and in the following
figures, we assess the extent
of success in designing sequences
that fold to structures harboring
the desired motif through two
metrics computed on the AF2
predictions: prediction confidence
(AF pLDDT) and the accuracy
of recapitulation of the original
scaffolded motif (motif AF-RMSD).
For RSV-F designs, these metrics
are rsvf_ii_141 (85.0, 0.53 Å),
rsvf_ii_158 (82.9, 0.51 Å), rsvf_ii_171
(88.4, 0.69 Å), rsvfv_hal_1 (82, 0.7 Å), rsvfv_hal_2 (88, 0.64 Å), and rsvfv_hal_3
(86, 0.65 Å). (B) Design of COVID-19 receptor trap based on ACE2 interface
helix (PDB ID 6VW1 chain A residues 24 to 42). Design metrics: ace2_76 (89.1,
0.55 Å), ace2_1157 (80.4, 0.47 Å), and ace2_1007 (83.3, 0.57 Å). Colors:
native protein scaffold, light yellow; native functional motif, orange; hallucinated
scaffold, gray; hallucinated motif, purple; and binding partner, blue. See
table S2 for additional metrics on each design. (C) Normalized maximum

surface plasmon resonance signal (response units) of purified RSV-F
epitope scaffolds and point mutants at various concentrations of hRSV90
antibody, with sigmoid fits. RSV-F refers to purified trimeric native F protein.
Kd values are as follows: RSV-F: 24 nM; rsvfv_hal_1: 0.9 mM; rsvfv_hal_2:
1.0 mM; rsvfv_hal_3: 1.3 mM. (D) Mean residue ellipticity (MRE) versus
wavelength, from CD spectroscopy, for the three RSV-F site V hallucinations
with binding activity.
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Fig. 3. Design of metal binding. (A) Scaffolding of di-iron binding site from E. coli
cytochrome b1 (PDB ID 1BCF chain A residues 18 to 25, 27 to 54, 94 to 97,
and 123 to 130) using inpainting. Colors: native protein scaffold, light yellow;
native functional motif, orange; hallucinated scaffold, gray; hallucinated
motif, purple; and bound metal, blue. (B) Absorbance spectra of dife_inp_1
(or mutant) in the presence (or absence) of an eight-fold molar excess of
Co2+. Peaks at 520, 555, and 600 nm, consistent with Co2+ binding to
the scaffolded motif (32). In the mutant, the six coordinating residues
[side chains shown in (A)] are mutated to alanine (E16A, E55A, H58A, E89A,
H92A, E115A). Protein concentration: 200 mM. (C) dife_inp_1 Co2+ titration
(protein concentration: 200 mM). Quantification of the absorbance at 550 nm,
using a predicted extinction coefficient of 155 for Co2+ binding the motif
(32), is consistent with both binding sites being recapitulated. (D) CD spectra

of dife_inp_1 in the presence and absence of Co2+ are both consistent
with the predicted helical structure. (E) Temperature dependence of
dife_inp_1 CD signal in the presence and absence of Co2+. Coordination of Co2+

in the core stabilizes the protein. Protein concentration: 6.7 mM; Co2+

concentration: 53.3 mM. (F) Inpainted design EFhand_inp_1 scaffolding the
double EF-hand motif with input motif residues in purple, input nonmotif
residues in green, and overlaid with the native motif from PDB ID 1PRW
(orange). (G) CD spectra of EFhand_inp_1 incubated with and without CaCl2
suggest stabilization of the protein upon binding calcium. (H) Tryptophan-
enhanced terbium fluorescence spectra of EFhand_inp_1 suggests that
the design binds terbium (57). Terbium binding signal is competed by 1 mM
CaCl2 (red). Design metrics (AF pLDDT, motif AF-RMSD): dife_inp_1
(92, 0.65 Å) and EFhand_inp1 (84, 0.7 Å).
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(fig. S11, C to E). Overall, the designs provide a
diverse set of promising starting points for fur-
therRSV-F epitope-based vaccine development.
We next applied hallucination to the in silico

design of receptor traps that neutralize viruses
bymimicking their natural binding targets and
thus are inherently robust against mutational
escape. We again augmented the loss function
with a penalty on interactions beyond those in

the native receptor to avoid opportunities for
viral escape. As a test case, we scaffolded the
helix of human angiotensin-converting enzyme 2
(hACE2) interacting with the receptor binding
domain of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) spike protein (28).
The hallucinated hACE2 mimetics have a di-
verse set of helical topologies, and AF structure
predictions recapitulate the binding inter-

face with sub-angstrom accuracy (Fig. 2B and
fig. S9C).

Designing metal-coordinating proteins

Di-iron sites are important in biological sys-
tems for iron storage (29) and can mediate
catalysis (30, 31). We were able to recapitulate
the di-iron site from E. coli bacterioferritin,
composed of four parallel helical segments, to
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Fig. 4. In silico design of enzyme active sites.
(A and B) Hallucinations using backbone description
of site using RF. (C and D) Hallucination using
side-chain description of site using AF2 augmented
with trRosetta (materials and methods). (A) Carbonic
anhydrase II active site (PDB ID 5YUI chain A
residues 62 to 65, 93 to 97, and 118 to 120).
(B) D5-3-ketosteroid isomerase active site (PDB ID
1QJG chain A residues 14, 38, and 99). Colors: native
protein scaffold, light yellow; native functional
motif, orange; hallucinated scaffold, gray; hallucinated
motif, purple; and bound metal, blue. [(B) and (D)]
Zoomed-in view of designed active sites. Design
metrics (AF pLDDT, motif AF-RMSD): hcA_1 (73,
1.04 Å), hcA_2 (71, 0.62 Å), KSI_1 (84, 0.30 Å Cb),
and KSI_2 (72, 0.53 Å Cb).

DC

BA Carbonic Anhydrase II (in silico)

KSI (in silico)

hcA_1 hcA_2

KSI_2KSI_1

Fig. 5. Design of protein-binding proteins. Designs
containing target-binding interfaces built around
native-complex–derived binding motifs. Targets are
in blue, native scaffolds in yellow or pink, native motifs
in orange, designed scaffolds in gray, and designed
motifs in purple. (A) Crystal structure of HAC PD-1 in
complex with PD-L1. (B) Inpainted PD-L1 binder
superimposed on PD-1 interface motif. (C) BLI binding
signal versus PD-L1 concentration. Kd = 326 nM.
(D) Crystal structure of previously designed TrkA
minibinder in complex with TrkA, superimposed
on TrkA receptor dimer. (E) Hallucinated bivalent TrkA
binder. Protein topology diagrams are on the right.
(F) BLI binding signal versus TrkA concentration;
mutations at both scaffolded binding sites reduce
TrkA binding. (G) Hallucinated Mdm2 binder designs
superimposed on native p53 helix in complex with
Mdm2 (see also fig. S17, D and E). New binding
interactions (hallucinated residues within 5 Å of the
target) are in green. (Inset) Overlay of mdm2_hal_1
and native p53 helix showing key side chains
for binding.
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sub-angstromAF-RMSD using both inpainting
(Fig. 3, A to E, and fig. S13) and hallucination
(fig. S12; the hallucinations were not tested
owing to buried polar residues; supplemen-
tary text). The designs had diverse helix con-
nectivities and low structural similarity to the
parent [figs. S13B and S12; template modeling
(TM)–score 0.55 to 0.71 to PDB ID 1BCF_A]. We
chose96 inpainteddesigns to test experimentally
and found that 76 had soluble expression, at
least eight (see supplementary text) had a
spectroscopic shift indicative of Co2+ binding
(a proxy for iron binding) (32, 33), and three
(dife_inp_1, dife_inp_2, anddife_inp_3; Fig. 3B
and fig. S13E) had CD spectra consistent with
the designed fold (Fig. 3D and fig. S13F) and
were stabilized by metal binding (Fig. 3E and
fig. S13G). Mutation of the metal binding resi-
dues abolished binding (Fig. 3B and fig. S13E),
and titration analysis of dife_inp_1 suggested
that bothmetal binding sites were successfully
scaffolded (Fig. 3C).
We next scaffolded the calcium-binding

EF-hand motif (34), a 12-residue loop flanked
by helices. Both constrained hallucination and
inpainting readily generated scaffolds recapit-
ulating either one or two EF-hand motifs to
within 1.0 Å AF-RMSD of the native motif
(Fig. 3F; fig. S14, A and B; and table S2). We
chose 20 hallucinations and 55 inpaints to
display on yeast and screen for calciumbinding
using tryptophan-enhanced terbium fluores-
cence (35). Six hallucinations and four in-
paintings had fluorescence consistent with
ion binding [fig. S14A;materials andmethods;
one of these proteins (EFhand_inp_2) was de-
signed using RFimplicit (supplementary text)].
The top hit from yeast, the inpainted EFhand_
inp_1, purified from E. coli as a monomer (fig.
S14C), had the expected CD spectrum (Fig. 3G)
and a clear terbiumbinding signal (Fig. 3H) that
was eliminated by CaCl2 competition (Fig. 3H).

In silico design of enzyme active sites

We next sought to scaffold the active site of
carbonic anhydrase II, which catalyzes the
interconversion of carbon dioxide and bicar-
bonate and has recently been of interest for
carbon sequestration (31–33). The active site
consists of three Zn2+-coordinating histidines
on two strands and a threonine on a loop,
which orients the CO2 (table S1). Despite the
complexity of the irregular, discontinuous
three-segment site, hallucination was able
to generate designs with sub-angstrom motif
AF-RMSDswith correctHis placement for Zn2+

coordination (Fig. 4A and fig. S9D); these are
less than 100 residues in size, considerably
smaller than the 261-residue native protein.
We next scaffolded the catalytic side chains

of D5-3-ketosteroid isomerase (KSI) (table S1)
involved in steroid hormone biosynthesis (36).
We attempted to use gradient descent by
backpropagation through AF (materials and

methods; a side chain–predicting version of
RF was not available at the time) but found it
difficult to obtain accurate side-chain place-
ment; the landscape may be too rugged with
the high-resolution side chain–based loss (sup-
plementary text). Better results were obtained
with a two-stage approach using, first, both AF
and trRosetta (to smoothen the loss landscape)
and a description of the active site at the back-
bone level, followed by a second all-atom AF-
only stage once the overall backbone was
roughly in place. This yielded multiple plausi-
ble solutions with nearly exact matches to the
catalytic side-chain geometry (Fig. 4, C and D,
and fig. S9E). In silico validation with a held-
out AF model (materials and methods) reca-
pitulated the designed active sites. The use of
stage-specific loss functions illustrates the
ready customizability of the hallucination
approach to specific design challengeswithout
network retraining.

Designing protein-binding proteins

To design binders to the cancer checkpoint
protein PD-L1, we scaffolded two discontig-
uous segments of the interfacial b sheet from
a high-affinity mutant of PD-1 (Fig. 5A; mate-
rials and methods) (15). Inpainting yielded
designs with not only good AF predictions of
the binder monomer (AF pLDDT > 80, motif
AF-RMSD < 1.4 Å) but also of the complex
between the binder and PD-L1, with an inter-
chain predicted alignment error (inter-PAE) of
<10 Å (materials and methods). In contrast to
our initial efforts with trRosetta hallucination
(fig. S1; supplementary text), it was not nec-
essary to redesign the inpainted sequences
using Rosetta. Of 31 designs selected for ex-
perimental testing, one design, pdl1_inp_1,
bound PD-L1 with a Kd of 326 nM (Fig. 5, B
and C), worse than high-affinity consensus
(HAC) PD-1 (Kd = 110 pM) (37) but better
than wild-type PD-1 (Kd = 3.9 mM) (37). The
pdl1_inp_1 design expressed as a monomer
(fig. S15E), was thermostable, and had a CD
spectrum consistent with that of a mixed a-b
fold (fig. S15F). Unlike native PD-1, which has
an immunoglobulin family b-sandwich fold,
pdl1_inp_1 has two helices buttressing the
interfacial b sheet, as well as an additional
fifth inpainted strand extending the interface
(fig. S15, A and B). The closest Protein Data
Bank (PDB) (38) hit had a TM-score of 0.61,
and the closest Basic Local Alignment Search
Tool (BLAST) NR hit had a sequence iden-
tity of 25.4%.
We next used ourmethods to design ligands

engaging multiple receptor binding sites.
The nerve growth factor (NGF) receptor TrkA
dimerizes upon ligand binding (39), and start-
ing from the TrkA-NGF crystal structure, we
positioned helical segments derived from
two copies of a previously designed TrkA
binding protein (4) and used hallucination

followed by inpainting (materials and meth-
ods) to scaffold themon a single chain (Fig. 5,
D and E). A design predicted to be well struc-
tured (AF pLDDT > 80) and interact with
TrkA (inter-PAE < 10 Å) was expressed, pu-
rified, and found to bind TrkA, as assessed
by biolayer interferometry (BLI) (Fig. 5F). A
double mutant that knocked out both de-
signed binding sites abolished TrkA binding,
whereas single mutants knocking out either
one of the binding sites maintained partial
binding (Fig. 5F and fig. S16), suggesting that
the protein binds two molecules of TrkA, as
designed.
RoseTTAFold is able to predict the structures

of protein complexes (40), andwehypothesized
that it could generate additional binding inter-
actions between hallucinated or inpainted
binder and a target beyond the scaffolded
motif. We used a “two-chain” hallucination
protocol (fig. S17; materials and methods) to
design binders to the Mdm2 oncogene by scaf-
folding the nativeN-terminal helix of the tumor
suppressor protein p53 and obtained diverse
designs with AF inter-PAE < 7 Å, target-aligned
binder RMSD < 5 Å, binder pLDDT > 85, and
spatial aggregation propensity (SAP) score < 35
(fig. S17, D and E); three examples are shown
in Fig. 5G.
The above approaches to protein-binder de-

sign require starting from a previously known
binding motif, but hallucination should in
principle be able to generate de novo inter-
faces as well. To test this, we used two-chain
hallucination to optimize 12-residue peptides
for binding to 12 targets starting from ran-
dom sequences, minimizing an interchain
entropy loss (fig. S17H). Most of the halluci-
nated peptides bound at native protein inter-
action sites (fig. S18A); the remainder bound
in hydrophobic grooves resembling protein
binding sites (fig. S18B). We used the same
procedure to generate 55- to 80-residue bind-
ers against TrkA and PDL-1 without starting
motif information and obtained designs pre-
dicted by AF to complex with the target, at the
native ligand binding site, with a target-aligned
binder RMSD < 5 Å and an inter-PAE < 10 Å
(fig. S17, F and G).
Unlike classical protein design pipelines,

which treat backbone generation and sequence
design as two separate problems, our methods
simultaneously generate both sequence and
structure, taking advantage of the ability of
RoseTTAFold to reason over and jointly opti-
mize both data types. This results in excellent
performance in both generating protein back-
bones with a geometry capable of hosting a
desired site and sequences that strongly en-
code these backbones. Our hallucinated and
inpainted backbones accommodate all of the
tested functional sites muchmore accurately
than any naturally occurring protein in the
PDB or AF predictions database (fig. S20 and
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table S3; supplementary text) (41), and our
designed structures are predicted more con-
fidently from their (single) sequences than
most native proteins with known crystal struc-
tures and are on par with structurally vali-
dated de novo designed proteins (fig. S7, A
and B). The hallucination and inpainting
approaches are complementary: Hallucina-
tion can generate diverse scaffolds for mini-
malist functional sites but is computationally
expensive because it requires a forward and
backward pass through the neural network
to calculate gradients for each optimization
step (materials and methods), whereas in-
painting usually requires larger input motifs
but is much less compute-intensive and out-
performs the hallucination method when
more starting information is provided. This
difference in performance can be understood
by considering the manifold in sequence-
structure space corresponding to folded pro-
teins. The inpainting approach can be viewed
as projecting an incomplete input sequence-
structure pair onto the subset of the mani-
fold of folded proteins (as represented by
RoseTTAFold) containing the functional site—
if insufficient starting information is provided,
this projection is not well determined, but with
sufficient information, it produces protein-like
solutions, updating sequence and structure in-
formation simultaneously. The loss function
used in the hallucination approach is con-
structed with the goal that minima lie in the
protein manifold, but there will likely not be a
perfect correspondence, and hence stochastic
optimization of the loss function in sequence
space may not produce solutions that are as
protein-like as those from the inpainting
approach.

Conclusion

The approaches for scaffolding functional sites
presented here require no inputs other than
the structure and sequence of the desired
functional site and, unlike previous methods,
do not require specifying the secondary struc-
ture or topology of the scaffold and can simul-
taneously generate both sequence and structure.
Despite a recent surge of interest in using
machine learning to design protein sequences
(42–49), the design of protein structure is rela-
tively underexplored, likely because of the
difficulty of efficiently representing and learn-
ing structure (50). Generative adversarial net-
works and variational autoencoders have been
used to generate protein backbones for spe-
cific fold families (51–53), whereas our ap-
proach leverages the training of RoseTTAFold
on the entire PDB to generate an almost un-
limited diversity of new structures and enable
the scaffolding of any desired constellation
of functional residues. Our “activation max-
imization” hallucination approach extends
related work in this area (54–56) by leveraging

its key strength, the ability to use arbitrary loss
functions tailored to specific problems and
design any length sequence without retraining.
The ability of our inpainting approach to ex-
pand from a given functional site to generate a
coherent sequence-structure pair should find
wide application in protein design because of
its speed and generality. The two approaches
individually, and the combination of the two,
should increase in power asmore-accurate pro-
tein structure, interface, and small-molecule
binding prediction networks are developed.
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Designing around function
Protein design has had success in finding sequences that fold into a desired conformation, but designing functional
proteins remains challenging. Wang et al. describe two deep-learning methods to design proteins that contain
prespecified functional sites. In the first, they found sequences predicted to fold into stable structures that contain the
functional site. In the second, they retrained a structure prediction network to recover the sequence and full structure
of a protein given only the functional site. The authors demonstrate their methods by designing proteins containing a
variety of functional motifs. —VV
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