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De novo enzyme design has sought to introduce active sites and substrate-binding
pockets that are predicted to catalyse areaction of interest into geometrically

compatible native scaffolds'?, but has been limited by a lack of suitable protein
structures and the complexity of native protein sequence-structure relationships.
Here we describe a deep-learning-based ‘family-wide hallucination’ approach that
generates large numbers of idealized protein structures containing diverse pocket
shapes and designed sequences that encode them. We use these scaffolds to design
artificial luciferases that selectively catalyse the oxidative chemiluminescence of
the synthetic luciferin substrates diphenylterazine® and 2-deoxycoelenterazine.
The designed active sites position an arginine guanidinium group adjacent toan
anion that develops during the reaction in a binding pocket with high shape
complementarity. For both luciferin substrates, we obtain designed luciferases with
high selectivity; the most active of these is a small (13.9 kDa) and thermostable (with a
melting temperature higher than 95 °C) enzyme that has a catalytic efficiency on
diphenylterazine (k..,/K,,=10° M s™) comparable to that of native luciferases,
butamuch higher substrate specificity. The creation of highly active and specific
biocatalysts from scratch with broad applications inbiomedicine is a key milestone
for computational enzyme design, and our approach should enable generation of a
wide range of luciferases and other enzymes.

Bioluminescent light produced by the enzymatic oxidation of a lucif-
erinsubstrate by luciferases is widely used for bioassays and imaging
inbiomedical research. Because no excitationlight sourceis needed,
luminescent photons are produced in the dark; this resultsin higher
sensitivity than fluorescence imaging in live animal models and in
biological samples in which autofluorescence or phototoxicity is a
concern*®. However, the development of luciferases as molecular
probes has lagged behind that of well-developed fluorescent pro-
tein toolkits for a number of reasons: (i) very few native luciferases
have been identified®’; (ii) many of those that have been identified
require multiple disulfide bonds to stabilize the structure and are
therefore prone to misfolding in mammalian cells®; (iii) most native
luciferases do not recognize synthetic luciferins with more desirable
photophysical properties’; and (iv) multiplexed imaging to follow
multiple processesin parallel using mutually orthogonal luciferase-
luciferin pairs has been limited by the low substrate specificity of
native luciferases'®™.

We sought to use de novo protein design to create luciferases
that are small, highly stable, well-expressed in cells, specific for one
substrate and need no cofactors to function. We chose a synthetic

luciferin, diphenylterazine (DTZ), as the target substrate because
of its high quantum yield, red-shifted emission®, favourable in vivo
pharmacokinetics™* and lack of required cofactors for light emis-
sion. Previous computational enzyme design efforts have primarily
repurposed native protein scaffolds in the Protein Data Bank (PDB)"?,
but there are few native structures with binding pockets appropri-
ate for DTZ, and the effects of sequence changes on native proteins
can be unpredictable (designed helical bundles have also been used
as enzyme scaffolds™ ¢, but these are limited in number and most
do not have pockets that are suitable for DTZ binding). To circum-
vent these limitations, we set out to generate large numbers of small
and stable protein scaffolds with pockets of the appropriate size and
shape for DTZ, and with clear sequence-structure relationships to
facilitate subsequent active-site incorporation. To identify protein
folds that are capable of hosting such pockets, we first docked DTZ
into 4,000 native small-molecule-binding proteins. We found that
many nuclear transport factor 2 (NTF2)-like folds have binding pockets
with appropriate shape complementarity and size for DTZ placement
(pink dashesin Fig.1e), and hence selected the NTF2-like superfamily
as the target topology.
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Fig.1| Generation of idealized scaffolds and computational design of
denovo luciferases. a, Family-wide hallucination. Sequences encoding
proteins with the desired topology are optimized by Markov chain Monte Carlo
(MCMC) sampling with amulticomponentloss function. Structurally
conserved regions (peach) are evaluated on the basis of consistency withinput
residue-residue distance and orientation distributions obtained from 85
experimental structures of NTF2-like proteins, whereas variable non-ideal
regions (teal) are evaluated on the basis of the confidence of predicted
inter-residue geometries calculated as the KL divergence between network
predictions and the background distribution. The sequence-space MCMC
samplingincorporatesboth sequence changes andinsertions and deletions
(see Supplementary Methods) to guide the hallucinated sequence towards
encodingstructures with the desired folds. Hydrogen-bonding networks are
incorporated into the designed structures to increase structural specificity.
b-d, Thedesign of luciferase active sites. b, Generation of luciferase

Family-wide hallucination

Native NTF2 structures have a range of pocket sizes and shapes
but also contain features that are not ideal, such as long loops that
compromise stability. To create large numbers of ideal NTF2-like
structures, we developed a deep-learning-based ‘family-wide hallu-
cination’approach that integrates unconstrained de novo design'’'®
and Rosetta sequence-design approaches’ to enable the generation
of anessentially unlimited number of proteins that have a desired fold
(Fig. 1a). The family-wide hallucination approach used the de novo
sequence and structure discovery capability of unconstrained protein
hallucination'*® for loop and variable regions, and structure-guided

substrate (DTZ) conformers. ¢, Generation of aRotamer Interaction Field
(RIF) to stabilize anionic DTZ and form hydrophobic packing interactions.

d, Docking of the RIF into the hallucinated scaffolds, and optimization of
substrate-scaffold interactions using position-specific score matrices (PSSM)-
biased sequence design. e, Selection of the NTF2 topology. The RIF was docked
into 4,000 native small-molecule-binding proteins, excluding proteins that
bind the luciferin substrate using more than five loop residues. Most of the top
hits were from the NTF2-like protein superfamily (pink dashes). Using the
family-wide hallucination scaffold generation protocol, we generated 1,615
scaffolds and found that these yielded better predicted RIF binding energies
thanthe native proteins. f,g, Our DL-optimized scaffolds sample more within
the space of the native structures (f) and have stronger sequence-to-structure
relationships (more confident Alphafold2 structure predictions) (g) than
native or previous non-deep-learning energy-optimized scaffolds.

sequence optimization for core regions. We used the trRosetta
structure prediction neural network?, which is effective in iden-
tifying experimentally successful de-novo-designed proteins and
hallucinating new globular proteins of diverse topologies. Starting
from the sequences of 2,000 naturally occurring NTF2s, we carried
out Monte Carlo searches in sequence space, at each step making a
sequence change and predicting the structure using trRosetta. As the
loss function guiding search, we used the confidence of the neural
network in the predicted structure (as in our previous free halluci-
nation study) supplemented with a topology-specific loss function
over core residue pair geometries (see Supplementary Methods);
inthe loop regions, we also allowed the number of residues to vary,
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whichresultedinshort nearideal loops. To further encode structural
specificity, we incorporated buried, long-range hydrogen-bonding
networks. The resulting 1,615 family-wide hallucinated NTF2 scaffolds
provided more shape-complementary binding pockets for DTZ than
did native small-molecule-binding proteins (Fig. 1e). This method
samples protein backbones that are closer to native NTF2-like pro-
teins (Fig.1f) and that have better scaffold quality metrics than those
produced inaprevious non-deep-learning energy-based approach?
(Fig.1g).

De novo design of luciferases for DTZ

Computational enzyme design generally starts from an ideal active
site or theozyme consisting of protein functional groups surrounding
the reaction transition state that is then matched into a set of exist-
ing scaffolds'?. However, the detailed catalytic geometry of native
marine luciferases is not well understood because only a handful of
apo structures and no holo structures with luciferin substrates have
been solved (at the time of this study)*?*. Both quantum chemistry
calculations®? and experimental data®?® suggest that the chemilu-
minescent reaction proceeds through an anionic species and that the
polarity of the surroundings can substantially alter the free energy
of the subsequent single-electron transfer (SET) process with triplet
molecular oxygen (°0,). Guided by these data (Extended Data Fig.
1), we sought to design a shape-complementary catalytic site that
stabilizes the anionic state of DTZ and lowers the SET energy barrier,
assuming that the downstream dioxetane light emitter thermolysis
steps are spontaneous. To stabilize the anionic state, we focused on
the placement of the positively charged guanidinium group of an
arginine residue to stabilize the developing negative charge on the
imidazopyrazinone group.

To computationally design such active sites into large numbers of
hallucinated NTF2 scaffolds, we first generated an ensemble of anionic
DTZ conformers (Fig. 1b). Next, around each conformer, we used the
RifGen method®?*° to enumerate rotamer interaction fields (RIFs) on
three-dimensional grids consisting of millions of placements of amino
acid side chains making hydrogen-bonding and nonpolar interactions
with DTZ (Fig.1c). Anarginine guanidinium group was placed adjacent
tothe Nlatom of the imidazopyrazinone group to stabilize the negative
charge. RifDock was then used to dock each DTZ conformer and associ-
ated RIF inthe central cavity of each scaffold to maximize protein-DTZ
interactions. An average of eight side-chain rotamers, including an
arginineresidue to stabilize the anionicimidazopyrazinone core, were
positionedin each pocket (Supplementary Fig.2a). For the top 50,000
docks with the most favourable side chain-DTZ interactions, we opti-
mized the remainder of the sequence using RosettaDesign (Fig.1d) for
high-affinity binding to DTZ with a bias towards the naturally observed
sequence variation to ensure foldability. During the design process,
pre-defined hydrogen-bond networks (HBNets) in the scaffolds were
kept intact for structural specificity and stability, and interactions of
these HBNet side chains with DTZ were explicitly required in the Rif-
Dock sstep to ensure the preorganization of residues that are essential
for catalysis. In the first sequence-design step, the identities of all RIF
and HBNet residues were kept fixed, and the surrounding residues
were optimized to hold the side chain-DTZ interactions in place and
maintain structural specificity. In the second sequence-design step,
the RIF residue identities (except the arginine) were also allowed to
vary, as Rosetta canidentify apolar and aromatic packing interactions
that were missed in the RIF owing to binning effects. During sequence
design, the scaffold backbone, side chains and DTZ substrate were
allowed to relax in Cartesian space. After sequence optimization, the
designs were filtered on the basis of ligand-binding energy, protein—
ligand hydrogen bonds, shape complementarity and contact molecular
surface,and 7,648 designs were selected and ordered as pooled oligos
for experimental screening.
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Identification of active luciferases

Oligonucleotides encoding the two halves of each design were assem-
bled into full-length genes and cloned into an Escherichia coli expres-
sion vector (see Supplementary Methods). A colony-based screening
method was used to directly image active luciferase colonies from the
library and the activities of selected clones were confirmed using a
96-well plate expression (Extended Data Fig. 2). Three active designs
wereidentified; we refer to the mostactive of these as LuxSit (from the
Latin lux sit, ‘let light exist’), which at 117 residues (13.9 kDa) is, to our
knowledge, smaller than any previously described luciferase. Biochemi-
cal analysis, including SDS-PAGE and size-exclusion chromatography
(Fig. 2a,b and Extended Data Fig. 3), indicated that LuxSit is highly
expressed in E. coli, soluble and monomeric. Circular dichroism (CD)
spectroscopy showed a strong far-ultraviolet CD signature, suggest-
ing an organized a-f structure. CD melting experiments showed that
the protein is not fully unfolded at 95 °C, and that the full structure
is regained when the temperature is dropped (Fig. 2c). Incubation of
LuxSit with DTZ resulted in luminescence with an emission peak at
around 480 nm (Fig. 2d), consistent with the DTZ chemiluminescence
spectrum. Although we were not able to determine the crystal structure
of LuxSit, the structure predicted by AlphaFold2 (ref.*') is very close to
the design model at the backbone level (root-mean-square deviation
(RMSD) =1.35 A) and over the side chains interacting with the sub-
strate (Fig. 2e). The designed LuxSit active site contains Tyr14-His98
and Asp18-Arg65 dyads, with the imidazole nitrogen atoms of His98
making hydrogen-bond interactions with Tyr14 and the Ol atom of
DTZ (Fig. 2f). The centre of the Arg65 guanidinium cationis 4.2 A from
the Nlatom of DTZ and Asp18 forms a bidentate hydrogen bond to the
guanidinium group and backbone N-H of Arg65 (Fig. 2g).

De novo design of luciferases for h-CTZ

We next sought to apply the knowledge gained from designing LuxSit
to create 2-deoxycoelenterazine (h-CTZ)-specific luciferases. Because
the molecular shape of h-CTZ is different from that of DTZ, we created
an additional set of NTF2 superfamily scaffolds (see Supplementary
Methods) with matching pocket shapes and high model confidence
(AlphaFold2-predicted local-distance difference test (pLDDT) > 92).
We then installed catalytic sites in these scaffolds and designed the
firstshell-proteinside chain-h-CTZ interactions using the histidine and
arginine substrate interaction geometries that were most successful
in the first round for DTZ. To design the remainder of the sequence,
we used ProteinMPNN*, which canresultin better stability, solubility
and accuracy than RosettaDesign. After filtering on the basis of the
AlphaFold2-predicted pLDDT, Cat RMSD, contact molecular surface
and Rosetta-computed binding energies (see Supplementary Meth-
ods), we selected and experimentally expressed 46 designs in E. coli
and identified 2 (HTZ3-D2 and HTZ3-G4) that had luciferase activity
with the h-CTZ luciferin substrate. Both designs were highly soluble,
monodisperse and monomeric, and the luciferase activities were of the
same order of magnitude as LuxSit (Extended DataFig. 4). The success
rate increased from 3/7,648 to 2/46 sequences in the second round,
probably owing to the knowledge of active-site geometry from the
firstround and the increased robustness of the ProteinMPNN method
of sequence design.

Optimization of luciferase activity

To better understand the contributions to the catalysis of LuxSit, the
mostactive of our designs, we constructed a site-saturation mutagen-
esis (SSM) library in which each residue in the substrate-binding pocket
was mutated to every other amino acid one at a time (see Supplemen-
tary Methods), and determined the effect of each mutation onluciferase
activity. Figure 2f-ishows the amino acid preferences at key positions.
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Arg65is highly conserved (Fig. 2g), and its dyad partner Asp18 can
only be mutated to Glu (which reduces activity), suggesting that the
carboxylate-Arg65hydrogen bondisimportant for luciferase activity.
In the Tyr14-His98 dyad (Fig. 2f), Tyrl4 can be substituted with Asp
and Glu, and His98 can be replaced with Asn. As all active variants had
hydrogen-bond donors and acceptors at these positions, the dyads
might help to mediate the electron and proton transfer required for
luminescence. Hydrophobic (Fig. 2i) and mt-stacking (Fig. 2h) residues at
thebindinginterfacetolerate other aromatic or aliphatic substitutions
and generally prefer the amino acid in the original design, consistent
with model-based affinity predictions of mutational effects (Extended
DataFig.5). The A96M and M110V mutants (highlighted in pink) increase
activity by 16-fold and 19-fold, respectively, over LuxSit (Supplementary
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highlighted in pink.

Tablel). Optimization guided by these results yielded LuxSit-f (A96M/
M110V), with a flash-type emission kinetic, and LuxSit-i (R60S/A96L/
M110V), withaphoton flux more than100-fold higher than that of LuxSit
(Extended DataFig. 6). Overall, the active-site-saturation mutagenesis
results support the design model, with the Tyr14-His98 and Asp18-
Arg65 dyads having key roles in catalysis and the substrate-binding
pocket largely conserved.

The most active catalysts, LuxSit-i (Extended Data Fig. 3b,e,h) and
LuxSit-f (Extended Data Fig. 3¢,f,i), were both expressed solubly in
E. coli at high levels and are monomeric (some dimerization was
observed at the high protein concentration; Extended Data Fig. 3I)
and thermostable (Extended DataFig. 3j,k). Similar to native luciferases
thatuse CTZ, the apparent Michaelis constants (K;,) of both LuxSit-i and
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LuxSit-fareinthe low-micromolar range (Fig. 3a) and the luminescent
signal decays over time owing to fast catalytic turnover (Extended
Data Fig. 7a). LuxSit-i is a very efficient enzyme, with a catalytic effi-
ciency (k.,/K.,) of 10° M s™. The luminescence signal is readily visible
tothe naked eye (Fig.3b), and the photon flux (photons per second) is
38%greater than that of the native Renilla reniformisluciferase (RLuc)
(Supplementary Table 2). The DTZ luminescent reaction catalysed by
LuxSit-iis pH-dependent (Extended Data Fig. 7b), consistent with the
proposed mechanism. We used a combination of density functional
theory (DFT) calculations and molecular dynamics (MD) simulations
to investigate the basis for LuxSit activity in more detail; the results
support the anion-stabilization mechanism (Extended Data Fig. 8a
and Supplementary Fig. 3a) and suggest that LuxSit-i provides better
DTZ transition-state charge stabilization than LuxSit (Extended Data
Fig.8b).

Cellimaging and multiplexed bioassay

As luciferases are commonly used genetic tags and reporters for cell
biological studies, we evaluated the expression and function of LuxSit-i
inlive mammalian cells. HEK293T cells expressing LuxSit-i-mTagBFP2
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showed DTZ-specific luminescence (Fig. 3c), which was maintained
after targeting of LuxSit-i-mTagBFP2 to the nucleus, membrane and
mitochondria (Extended Data Fig.9). Native and previously engineered
luciferases are quite promiscuous, with activity on many luciferin sub-
strates (Fig. 4ac and Supplementary Fig. 4); this is possibly a result
of their large and open pockets (a luciferase with high specificity to
one luciferin substrate has been difficult to control even with exten-
sive directed evolution®?*). By contrast, LuxSit-i exhibited exquisite
specificity for its target luciferin, with 50-fold selectivity for DTZ over
bis-CTZ (which differs only in one benzylic carbon; MD simulations
suggest that this arises from greater transition-state shape complemen-
tarity (Extended Data Fig. 8b,c and Supplementary Fig.3b,c)), 28-fold
selectivity over 8pyDTZ (differing only in one nitrogen atom) and more
than100-fold selectivity over other luciferin substrates (Fig. 4b). One
of our active design for h-CTZ (HTZ3-G4) was also highly specific for
its target substrate (Fig. 4c and Extended Data Fig. 4d). Overall, the
specificity of our designed luciferases is much greater than that of
native luciferases®>¢ or previously engineered luciferases® (Supple-
mentary Table 5).

Wereasoned that the high substrate specificity of LuxSit-i could allow
the multiplexing of luminescent reporters through substrate-specific
orspectrally resolved luminescent signals (Fig. 4d and Extended Data
Fig.10a,b). To investigate this possibility, we placed LuxSit-i down-
stream of the NF-kB response element and RLuc downstream of the
cAMP response element (Fig. 4e). The addition of activators (TNF)
of the NF-kB signaling pathway resulted in luminescence when cells
were incubated with DTZ, while the luminescence of PP-CTZ (the sub-
strate of RLuc) was observed only when the cAMP-PKA pathway was
activated (Fig. 4f). Because DTZ and PP-CTZ emit luminescence at
different wavelengths, they canin principle be combined and the two
signals can be deconvoluted through spectral analysis. Indeed, we
observed that activating the NF-kB signaling resulted in luminescence
atthe DTZ wavelength, while the addition of CAMP-PKA pathway activa-
tors (FSK) generated luminescence at the PP-CTZ wavelength, allowing
us tosimultaneously assess the activation of the two signaling pathways
inthe same sample with either cell lysates (Fig. 4g) or intact HEK293T
cells (Extended DataFig.10c-e) by providing both substrates together.
Thus, the high substrate specificity of LuxSit-i enables multiplexed
reporting of diverse cellular responses.

Conclusion

Computational enzyme design has been constrained by the number
of available scaffolds, which limits the extent to which catalytic con-
figurations and enzyme-substrate shape complementarity can be
achieved™ . The use of deep learning to produce large numbers of
de-novo-designed scaffolds here eliminates this restriction, and the
more accurate RoseTTAfold (ref. *®) and AlphaFold2 (ref.*') should
enable protein scaffolds to be generated even more effectively through
family-wide hallucination and other approaches®*. The diversity of
shapes and sizes of scaffold pockets enabled us to consider a range of
catalyticgeometries and to maximize reaction intermediate-enzyme
shape complementarity; to our knowledge, no native luciferases have
folds similar to LuxSit, and the enzyme has high specificity for a fully
synthetic luciferin substrate that does not exist in nature. With the
incorporation of three substitutions that provide amore complemen-
tary pocket to stabilize the transition state, LuxSit-i has higher activity
than any previous de-novo-designed enzyme, witha k_,/K,,, (10 M s™)
inthe range of native luciferases. Thisis anotable advance for compu-
tational enzyme design, as tens of rounds of directed evolution were
required to obtain catalytic efficiencies in this range for a designed
retroaldolase, and the structure was remodelled considerably*;
by contrast, the predicted differencesin ligand-side-chaininteractions
between LuxSit and LuxSit-i are very subtle (Supplementary Fig. 2b;
achieving such high activities directly from the computer remains a
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challenge in computational enzyme design). The small size, stability
androbust folding of LuxSit-i makes it well-suited in luciferase fusions
to proteins of interest and as a genetic tag for capacity-limited viral
vectors. On the basic science side, the small size, simplicity and high
activity of LuxSit-i make it an excellent model system for computational
and experimental studies of luciferase catalytic mechanism. Extending
theapproachused here to create similarly specific luciferases for syn-
thetic luciferin substrates beyond DTZ and h-CTZ would considerably
extend the multiplexing opportunitiesillustrated in Fig. 4 (particularly
with the recent advances in microscopy*), and enable a new generation
of multiplexed luminescent toolkits. More generally, our family-wide
hallucination method opens up an almost unlimited number of scaf*-
fold possibilities for substrate binding and catalytic residue place-
ment, which is particularly important when the reaction mechanism
and how to promote it are not completely understood: many alterna-
tive structural and catalytic hypotheses canbe readily enumerated with

transiently transfected with CRE-RLuc, NF-kB-LuxSit-iand CMV-CyOFP plasmids
were treated with either forskolin (FSK) or human tumour necrosis factor (TNF)
toinduce the expression oflabelled luciferases. f,g, Luminescence signals from
cells canbe measured under either substrate-resolved or spectrally resolved
methodsby aplatereader.f, For the substrate-resolved method, luminescence
intensity was recorded without afilter afteradding either PP-CTZ or DTZ. g, For
thespectrally resolved method, both PP-CTZand DTZwereadded, and the
signals were acquired using 528/20 and 390/35filters simultaneously. Infand

g, thebottom panelindicates the addition of FSK or TNF. Luminescence signals
were acquired fromthe lysate of 15,000 cellsin CelLytic Mreagent, and the
CyOFP fluorescence signal was used to normalize cellnumbers and transfection
efficiencies. All datawere normalized to the corresponding non-stimulated
control.Dataaremean +s.d. (n=3).

shape and chemically complementary binding pockets but different
catalytic residue placements. Although luciferases are unique in cata-
lysing the emission of light, the chemical transformation of substrates
into products is common to all enzymes, and the approach devel-
oped here should be readily applicable to a wide variety of chemical
reactions.
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Extended DataFig.1|Proposed catalytic mechanism of coelenterazine-
utilizingluciferases. Density functional theory (DFT) calculation suggested
that the formation of an anionic stateis the essential electron source for the
activation of triplet oxygen (*0,). Supported by both theoretical**** and
experimental evidence*?, the next oxygenation processis likely through a
single-electron transfer (SET) mechanismin which the surroundingreaction
field could highly influence the change of Gibbs free energy (AGg;). Finally, the
thermolysis of adioxetane light emitter intermediate can produce photons via
the mechanism of gradually reversible charge-transfer-induced luminescence
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(GRCTIL), whichis generally exergonic. As all the historical pieces of evidence
arebased on calculations in the virtual solvents or chemiluminescence inideal
organicsolvents, the detailed mechanism of aluciferase-catalysed luminescence
reaction has remained unclear. We proposed that the key step of the enzymeis
to promote the formation of an anionic state and create asuitable environment
tofacilitate efficient SET. Hence, the goal of this study is to design an enzyme
reaction field surrounding the substrate to stabilize the anionic substrate state
and alter thelocal proton activity, solvent polarity, and hydrophobicity for the
efficientactivation of>0,.
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Extended DataFig.2|Schematicrepresentation of colony-based luciferase
screening. Computationally designed DNA sequences were purchasedinan
oligo array, where the fragments were amplified by PCR, assembled, and
ligated into a pBAD bacterial expression vector. The plasmid library was used
to transform DH10B cells. Each colony grown on the LB agar plate represented
oneluciferase design. The plates were sprayed with DTZ solution and imaged to
identify active colonies usinga ChemiDoc imager. Selected colonies were

Confirm Activity

inoculatedin 96-well plates, expressed, and purified to confirmindividual
luciferase activity. Plasmids can then be individually sequenced to point out
active design models that provideinsightsinto the design principle and
enzyme functions or canbe subjected to random mutagenesis for further
evolution. Insert: three luciferases were identified from this screening. We
refer to the most active and DTZ-specific luciferase as “LuxSit”.
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Pre-IPTG; 2: Post-IPTG; 3: Soluble lysate; 4: Flow-through; 5: Wash; 6: Elusion; 7:
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purifiedd, LuxSit; e, LuxSit-i;and f, LuxSit-f monomer. g-i, Deconvoluted mass
spectrumof g, LuxSit, h, LuxSit-i, and i, LuxSit-f. j k, Far-ultraviolet circular

dichroism (CD) spectra (Left panel) of j, LuxSit-i;and k, LuxSit-fat 25 °C (black
line), 95°C (red line) and cooled back to 25 °C (green line). CD melting curve at
220 nm (Right panel).l, Dimeric SEC peak was observed when LuxSit-i was
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represent the wild-type (LuxSit) amino acids. The rank of wild-type dd Gy, for
each positionscreened for activity isshownwithaheatmapin c. d-f, The wild-
type ddGy,;,q of the residues designed for d,e, m-tt stacking or f, hydrophobic
interactions were the lowest compared to the mutation ddG,;,4 values. This
shows that the sequence is near-optimal for substrate binding and the design
modelisreliable.

Extended DataFig.5|Predicted changesinsubstrate-binding free energy
from binding-site mutations. The calculated ddG;,; of each mutation was
plotted asafunction of the relative average experimental luciferase activity.
The ddG;,q of hypothetical catalytic residues: a, Tyr14-His98 and b, Asp18-
Arg65 dyads were generally not the lowest, which suggested that these
designed catalyticresidues are not favourable for substrate binding. Red dots
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Extended DataFig. 6|Screening ofarandomized NNK library at 60,96 and
110 positions and sequence alignmentbetween LuxSit and its variants. We
generated afully randomized library at 60,96, and 110 positions toscreenall
possible combinations exhaustively. After the colony-based screening, we
identified many colonies with strong luciferase activitieswith DTZ. Each
colonywas expressedindividually ineach well of 96-well plates (1 mL culture)
and purified accordingly (see Supplementary Methods). a, Individual
luminescence activity of each selected mutant was plotted and compared to
the parent, LuxSit. Luminescence activities were measured in the presence of
25 pMDTZ.Luminescence activity (RLU) was shown as theintegrated signal
over the first 15 min. Statistical analysis of the amino acid frequency versus the

luciferase activity atresidueb, 60, ¢, 96,and d, 110. Data are presented as mean
+s.d. (nvariesacross each barasthe mutants wereselected fromarandomized
library). Arg60is confirmed to be mutable among all selected mutants as
Arg60 may be structurally less well-defined because it emanates fromaloop
and has no hydrogen-bonding partner. Ala96 prefers larger side-chain
substitutions (Leu, Ile, Met, and Cys), and Met110 favours hydrophobicresidues
(Val, lle, and Ala). A newly discovered variant (R60S/A96L/M110V) with more
than100-fold higher photon flux over LuxSit was assigned LuxSit-i for its high
brightness.Inthe sequence alignment, mutations are highlighted in yellow
fonts and grey backgrounds. The conserved catalytic dyads of Asp18-Arg65
and Tyrl4-His98 areingreenand blue fonts.
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Extended DataFig.7|Additional characterization of LuxSit variants.
a,Normalized emission kinetics 0f 15,000 intact HeLa cells expressing LuxSit-i
(red), 100 nM purified LuxSit-i (green), or 100 nM purified LuxSit-f (blue) in the
presence of 50 uMDTZ. The more extended emission kineticsin HeLacells is
likely due to the diffusion rate of DTZ across cellmembranes. b, Normalized
luminescence decay curves of LuxSit-iin various pHbuffers revealed a

pH-dependent catalytic mechanism. ¢, Luminescent quantum yield was
estimated from theintegrated luminescence signal until completely
converting125 pmolsubstrates to photonsin the presence of 50 nM
corresponding luciferase (see Supplementary Methods). Data are presented
asmean (n=3).
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Extended DataFig. 8| Free-energy profile of DTZ chemiluminescence and
MD simulations of proposed protein-intermediate complexes. a, The
free-energy profile calculated by density functional theory (DFT) shows triplet
oxygen canreactdirectly with the anionic species of DTZ (Intl) through the
reactant complex Int2 and TS1. The dioxetane intermediate Int3 then cleaves
inanopenshellsinglet transition state °TS2 to form excited intermediate
Int4*, which rapidly extrudes CO, and forms the emissive product Int5. Note:
either Int4* or Int5*emitin the observedregion, but the lifetime of Int4*is very
shortand likely completely converts to Int5* before emission. b, Int2and Int3
were docked into both LuxSit and LuxSit-i and the bindings were evaluated by
molecular dynamics (MD). The distances between His98 to O1 (top row) and
Arg65toNI1 (bottom row) of the substrate were plotted throughout 500 ns MD

simulations. LuxSit-i (blue trace) binds Int2’ (middle) considerably better than
LuxSitdoes (red trace), suggesting that the mutations of LuxSit-i provide a
binding pocket more complimentary to TS1. This binding orientation brings N1
ofthe substrate much closer to Argé65, providing better charge stabilization for
the high energy transition state. ¢, Docking of the peroxide anion form of
bis-CTZinto the pocket of LuxSit-i; blue overlay represents DTZ in the original
design model. During MD simulation, the added benzylic carbon of bis-CTZ
(greentrace) disrupts the shape complementarity between LuxSit-iand the
transition states (TS1and TS2), reducing the charge stabilization by Arg65.
This charge stabilization is necessary for the reaction to proceed, explaining
the high substrate specificity of LuxSit-i for DTZ over bis-CTZ.
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Extended DataFig. 9 | Expression, localization and luminescence activity
of LuxSit-iinlive HEK293T and HeLa cells. a,b, Fluorescence imaging of live
a,HEK293T and b, HeLa cells expressing LuxSit-i-mTagBFP2, which isuntargeted
orlocalized to the nucleus (Histone2B), plasma membrane (KRasCAAX), or
mitochondria (DAKAP) cellular compartments.Scalebar:10 pm.c,d, Luminescence
signals were measured with15,000intact c, HEK293T ord, HeLacellsin the
presence of 25uMDTZin DPBS. Transfection efficiencies range from 60-70%
for HEK293T cells and 5-10% for HeLa cells. e, Luminescence emission spectra
acquired from LuxSit-i expressing HEK293T cells is consistent with the

emissionspectraof recombinant LuxSit-i purified from £. coli.f,g, Luminescence
signals were measured with 15,000 f, intact LuxSit-i expressing HEK293T cells
org, celllysateinthe presence of 25 uMindicated substrate in DPBS.
Luminescenceintensities were normalized to DTZ signal, showing highDTZ
specificity over other substratesin cell-based assays. Data were shown as total
luminescence signal over the first 20 min +s.d. (n =3). h, Normalized
luminescenceintensity profile of lines traversing across different cells (n =10)
of mainFig.3cluminescenceimage; grey linesrepresent untransfected cells.
Errorbarsrepresent + SEM.
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Extended DataFig.10|Substrate specificity of LuxSit-iand spectrally
resolved luciferase-luciferin pairs allow multiplexed bioassay. a, The
orthogonality relationship between LuxSit-i-DTZ and RLuc-PP-CTZ (Prolume
Purple, methoxy e-Coelenterazine) luminescent pairs. Indicated percentages
of eachluciferase were mixed at different ratios totalling 100%. After the
addition of both25 uM DTZ and PP-CTZ substrates, filtered light from 528/20
and 390/35 channels were measured simultaneously. b, Heat map shows the
luminescence signal forindividual luciferase (100 nM) or 1:1 mixture in the
presence of the cognate or non-cognate (DTZ or PP-CTZ or both) substrates.
Responsessignals wereacquired by aNeo2 plate reader with 528/20 and

390/35 nm filters simultaneously. ¢, Multiplex luciferase assay in live HEK293T
after co-transfection of CRE-RLuc, NFkB-LuxSit-i,and CMV-CyOFP plasmids
and stimulation by Forskolin (FSK) orhuman TNF.d,e, 15,000 intact cells were
assayed (see Supplementary Methods) by either d, substrate-resolvedore,
spectrally resolved modes after adding DTZ, PP-CTZ, orbothDTZ and PP-CTZ
inDPBS without celllysis. Areascanning of the CyOFP fluorescence signal was
used to estimate cellnumbers and transfection efficiency. The reported unit
wasRLU/a.u.; relative light units/fluorescence intensity measurements at
Ex./Em.=480/580 nm. All data were normalized to the corresponding
non-stimulated control. Data are presented as mean £s.d. (n=3).
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