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As a result of evolutionary selection, the subunits of naturally occurring protein assemblies often fit
together with substantial shape complementarity to generate architectures optimal for function in a
manner not achievable by current design approaches. We describe a “top-down” reinforcement learning–
based design approach that solves this problem using Monte Carlo tree search to sample protein
conformers in the context of an overall architecture and specified functional constraints. Cryo–electron
microscopy structures of the designed disk-shaped nanopores and ultracompact icosahedra are very
close to the computational models. The icosohedra enable very-high-density display of immunogens and
signaling molecules, which potentiates vaccine response and angiogenesis induction. Our approach
enables the top-down design of complex protein nanomaterials with desired system properties and
demonstrates the power of reinforcement learning in protein design.

M
ultisubunit protein assemblies play
critical roles in biology and are the
result of evolutionary selection for func-
tion of the entire assembly. Therefore,
the subunits in structures such as icosa-

hedral viral capsids often fit together almost
perfectly (1, 2). In contrast to direct evolu-
tionary selection on overall system properties,
de novo protein design has generated protein
architectures using a “bottom-up” hierarchical
approach (Fig. 1A, left) in which monomeric
structures are first docked into symmetric
oligomers (3–6) and then assembled into
closed assemblies with tetrahedral, octahe-
dral, or icosahedral symmetry (7–14) or open
assemblies such as two-dimensional (2D) lay-
ers and 3D crystals (15–19). An advantage of
this hierarchical approach is that the multi-
ple interfaces that stabilize the assembly can
be validated independently (the first by char-
acterization of the symmetric oligomer and
the second by characterization of the nano-
material assembly from the preformed oligo-
mer), considerably increasing the robustness
of the overall design process. Although such
designed assemblies are already proving use-

ful for biomedicine in immunobiology and
other areas, as highlighted by the recent ap-
proval of a de novo–designed COVID vaccine
(20–23), the bottom-up approach does have
limitations. The properties of the assembly
are limited to what can be generated from the
available oligomeric building blocks, at least
one of the subunit-subunit interfaces must be
strong enough to stabilize a cyclic oligomeric
substructure in isolation, and, more generally,
there is no way to directly optimize the prop-
erties of the overall assembly.
We sought to overcome the limitations of

bottom-up protein complex design by devel-
oping a top-down approach (Fig. 1A, right)
that starts from a specification of the desired
properties (overall symmetry, porosity, etc.) of
the structure and systematically builds up
subunits that pack together to optimize these
properties. We reasoned that protein frag-
ment assembly (24–28), which can generate
a wide variety of monomeric protein struc-
tures, could provide a suitable mechanism
for generating diversity. Previous design ap-
proaches such as SEWING have built up pro-
teins from fragments, optimizing for monomer
stability at each step (29), but we aimed in-
stead to optimize for overall system properties,
which could involve trading off monomer
stability for increased subunit-subunit inter-
action strength and other properties. To en-
able such end state–based optimization, we
turned to reinforcement learning (RL), which
has achieved considerable success recently in
different fields of artificial intelligence, such
as self-driving cars (30), the AlphaGo pro-
gram that defeats top human players in the
game of Go (31, 32), and algorithm develop-
ment (33). Monte Carlo tree search (MCTS)
(34, 35) is an RL algorithm that finds optimal

series of choices within a search tree. In MCTS,
choices are selected randomly at each branch
point to find a path down the tree, and after ex-
ploring a path, the state is evaluated, and prob-
abilities at each branch point back-propagated
up the tree are reweighted accordingly such
that subsequent iterations are more likely to
lead to optimal paths.

Backbone sampling by MCTS

We sought to develop a MCTS algorithm for
generating protein complexes that builds up
the monomeric subunits from protein frag-
ments directly optimizing for prespecified
global structural properties. We set up the
tree search such that at each step in the tree,
a short protein fragment is appended at either
the N terminus or C terminus of the growing
chain. The number of fragments to consider at
each step is a trade-off between the rapidity of
learning (with a smaller number, weights on
each choice can be learned more quickly) and
the total diversity of structures that can be
generated (which increases with the number
of choices at each step). We chose to balance
these factors by using as building blocks para-
metrically generated straight helices, which
are fully described by a single parameter (the
length, which we allow to vary from nine to
22 residues), followed by short loops clus-
tered into 316 bins (derived from clustering
loops in a large helical protein database; see
the materials and methods). The search be-
gins with the selection of one of the helix
possibilities and then alternates between the
addition of a loop or a helix choice at either
terminus. Once a loop bin is chosen, we select
randomly from the closely related loop back-
bones within the cluster (Fig. 1B, left). Although
this is a far narrower set of local structures
than observed in native protein structures,
we found in preliminary explorations that a
wide variety of compact protein shapes could
be readily generated from such building blocks.
Building up a 100-residue protein backbone
with this approach requires about five helix
and four loop additions, yielding a total
number of possibilities of ~1 × 1017, with
additional structural diversity from the var-
iation in loop backbones within a bin. The
size of the search tree grows exponentially
with the number of structural elements, so
the space of possibilities is more effectively
explored for monomers with fewer helices
than for larger monomers.
The search is modulated based on the spe-

cific problem specification through geometric
constraints that are applied at each step in
the search tree and score functions that are
evaluated only after full structures are com-
pleted. Potential moves consisting of helix
or loop fragments are selected at each level
of the search tree only if they pass geometric
constraints that can be evaluated before the
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assembly of the entire structure; these include
internal clashes and overall shape constraints
(see the materials and methods for a full list
of geometric constraints). Upon selection of a
move passing the geometric constraints, its
probability is upweighted, as are the proba-
bilities of all prior moves leading to this point

in the search tree. Completed backbones are
evaluated using score functions that assess
how well the overall generated structure sat-
isfies the user specification of the problem to
be solved (Fig. 1C and materials and meth-
ods), and the probabilities of selection of each
move at each step along the search tree are

reweighted accordingly. As individual move
weights become increasingly biased after many
traversals through the search tree, the gen-
erated complete backbones have higher and
higher scores (fig. S1). Because each itera-
tion takes on average only tens of millisec-
onds, high-scoring backbones can be sampled
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Fig. 1. Top-down design strategy and computational pipeline. (A) Bottom-up
(left) and top-down (right) strategies to protein assembly design. (B) (Left)
MCTS architecture for monomer backbone generation. During each simulation,
a helix stub is initialized at a random rigid body start position, and different
configurations of helices and loops are sampled and constructed sequentially
with probability Pt stored in each edge to build the search tree. Each move
is checked against a set of predefined geometric constraints during the
expansion stage and then updates probabilities Pt′ afterward. Upon successful
completion of a search tree, the monomer is evaluated by score functions

and probabilities Pt′′ are back-propagated to update all of the search tree edges.
(Right) Symmetric transformations are applied to build an icosahedral capsid in
parallel with monomers using the MCTS generative algorithm. (C) Concurrent
geometric check (left) is performed at every step of the expansion stage and the
search tree is terminated if there are violations. Final evaluation (right) with a
series of score functions is performed upon completion of a simulation for
monomers and assemblies. (D) In silico RL-generated capsids (blue) occupy a
distinct structural space compared with de novo–designed protein cages (red)
and natural capsids (green).
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at scale by searching over tens of thousands
of iterations. To address the classical RL prob-
lem of balancing exploration with exploita-
tion (30–32), the search is initialized from
many independent trees, and the maximum
probability of any one move is capped (see
the materials and methods).
We first tested the MCTS approach in silico

at the protein monomer level, choosing as a
test problem the generation of protein back-
bones with arbitrarily prespecified overall
shapes. To our knowledge, there are no cur-
rent approaches for addressing this problem.
A specified build volume is represented on a
grid, and the MCTS is initialized randomly
within the volume. At each move, only addi-
tions that stay within the specified volume are
accepted. For a range of prescribed shapes,
including regular polyhedra and letters from
the alphabet, the ensembles of generated struc-
tures closely fill the specified volumes, and indi-
vidual backbones have the prespecified shapes
(fig. S2). The average sequence length of the
solutions increases through the optimization
as the choices of moves and combinations of
moves that lead to satisfaction of the input
constraints are learned, enabling traversal fur-
ther down the search tree (fig. S1A).
We next sought to generalize the MCTS to

the design of symmetric nanomaterials by ap-
plying symmetry operators to generate assem-
blies with the desired symmetry at each step
in the search tree. Each move (helix or loop
addition) is assessed by considering not only
the growing monomer, but also its interac-
tions with all nearby symmetry mates, com-
puted using transformation matrices specifying
each symmetry operator; moves that introduce
steric clashes are discarded (Fig. 1, B and C). We
tested these capabilities in silico by designing
cyclic assemblies with symmetries C5 through
C12, as well as tetrahedral, octahedral, icosahe-
dral, and quasisymmetric icosahedral assem-
blies of up to 240 subunits (figs. S3 and S4).
We found that by providing different geomet-
ric constraints and score functions to guide
the search, we could control properties such
as shape, size, porosity, and termini position
from the top down (figs. S3 to S6).

Nanopore construction using constrained
symmetric MCTS

As a first experimental test of the MCTS ap-
proach, we applied it to the highly constrained
design challenge of filling the space between
two previously designed cyclic protein rings
(6, 36) to generate disk-shaped structures with
a central nanopore (Fig. 2A). Filling this sub-
stantial but irregularly shaped space such
that there are no large voids between the two
rings is not straightforward with previously
described protein design methods. We ap-
proached this challenge with MCTS by geo-
metrically constraining the search to the space

between the two rings, requiring dense pack-
ing such that the only large void in the re-
sulting assembly is the pore of the inner C6
ring. Both the inner and the outer ring have
C6 symmetry, and the search tree was initial-
ized to start at the N termini of the outer ring
and simultaneously build six subunits that
collectively fill the empty space. We performed
the MCTS for each of 2000 placements of a
set of different inner rings with a range of
inner pore sizes inside a constant outer ring
(for each inner ring, we sampled rotations
around and translations along the common
cyclic symmetry axis). We selected backbones
that fully filled the space between the two
rings, designed sequences with ProteinMPNN
(37), and selected for experimental character-
ization 32 designs predicted to assemble into
the designed assemblies by AlphaFold (AF)
(38). Of these, we found that 28 were soluble
and could be purified and 11 formed particles
with the expected size and shape by negative-
stain electron microscopy (nsEM). nsEM 3D
reconstructions for two designs had an over-
all shape closely consistent with that of the
design models (Fig. 2B; some C7 2D class aver-
ages were also obtained; fig. S7). We obtained a
cryo–electron microscopy (cryo-EM) map of a
third design at 5.1-Å resolution and found it to
be closely consistent with the design model:
The alpha helices of the model are clearly
within the contours of the density (Fig. 2C and
fig. S8). The MCTS solution effectively sat-
isfies the design criteria: The space between
the two original rings is completely filled in,
generating a disk-like structure with a narrow
circular pore in the center. We are not aware
of any previously designed or naturally oc-
curring proteins that have this overall shape,
which could be very useful for downstream
nanopore-based sensing applications. More
generally, these results demonstrate that the
MCTS approach can solve highly constrained
protein design problems.

Top-down design of mini-icosahedra

We next explored the use of MCTS to gener-
ate icosahedral assemblies by using 59 trans-
formation matrices to compute symmetry
mates for a growing monomer. We sought
to design very small, closely packed capsids
inaccessible by other design methods, and
developed geometric constraints and score
functions to specifically favor such struc-
tures (Fig. 1 and materials and methods). The
end state–based score functions include mea-
sures of cage porosity and interface desig-
nability, as well as external placement of at
least one terminus to enable fusion constructs
(Fig. 1C). Given a specification of the length
and number of helices in the monomer and
the size of the overall assembly, we initial-
ized millions of MCTS trajectories starting
from a short helical fragment randomly placed

within a specified upper distance bound of the
origin in a random orientation and performed
10,000 iterations for each to generate a large
set of diverse structures. TheMCTS generated
closely packed icosahedral assemblies in silico,
which span a structural space distinct from
that of native and previous de novo icosahe-
dra, with shorter sequence lengths than any
previously described protein icosahedra and
porosities comparable to the densely packed
capsids generated by evolution (Fig. 1D).
The MCTS method rapidly generates tens

of thousands of candidate icosahedral assem-
blies, and we experimented with approaches
for rapidly designing sequences that stabilize
these assemblies in a manner compatible with
our overall top-down approach. In previous
bottom-up nanocage design studies, the se-
quences and backbones of the oligomeric
building blocks are pre-optimized, so only the
new interface formed between the building
blocks in the cage is designed, and the over-
all backbone is kept largely fixed (11). By
contrast, with the top-down MCTS approach,
the entire sequence must be designed, with
backbone relaxation to optimize sequence-
structure compatibility both within and be-
tween themonomers and to increase interface
shape complementarity. A deep neural net-
work trained to learn the sequence and struc-
ture relationships of native proteins was used
to generate amino acid sequence profiles
for each position in the newly generated back-
bones, which were used in turn to bias amino
acid selection in the sequence design stage
using Rosetta design (materials and meth-
ods and figs. S9 to S15). The resulting de-
signs were filtered on the basis of interface
contact molecular surface area (38), shape
complementarity, predicted binding energy,
exposed surface hydrophobicity, and AF (39)
prediction similarity to the design model (see
the materials andmethods). The rigid body and
internal degrees of freedom of the selected
icosahedral assemblies were then optimized
by Rosetta symmetric relaxation (40, 41), start-
ing from both the Rosetta design model of the
assembly and the AF-predicted structure of the
monomer mapped back onto the assembly. To
further increase sequence-structure compatibil-
ity, we repeated this design-predict-relax cycle
three times, at each iteration performing se-
quence design on the full assemblies generated
in the previous iteration, mapping back the
predictedmonomer structures into the assem-
blies, and relaxing the full structure in Rosetta.
We applied this sequence design andbackbone
refinement procedure to 220,000 of the MCTS-
generated backbones and selected 368 designs
for experimental characterization (detailed fil-
tering processes are described in the materials
and methods and figs. S11 to S13).
Linear gene fragments encoding each design

with hexahistidine purification tags were cloned
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into an Escherichia coli expression vector, and
the proteins produced in E. coli in a 96-well
format were purified by immobilized metal
affinity chromatography (IMAC) pull-down. A
total of 208 of the 368 designs were expressed
and soluble as assessed by SDS–polyacrylamide
gel electrophoresis. To evaluate particle for-
mation, we performed nsEM on the IMAC
elution fraction for each soluble sample. Two
designs (RC_I_1 and RC_I_2, RL capsid with I
symmetry, design 1 and 2) formed uniform
particles with the expected size and shape
(Fig. 3, A and B). Size-exclusion chromatog-
raphy (SEC) of both designs yielded single
peaks with an apparent molecular weight in
the range expected for these assemblies (Fig. 3,
C and D). The designed assemblies had the
expected alpha-helical circular dichroism (CD)
spectra and apparent melting temperatures

above 65°C. nsEM analysis showed that assem-
bly morphologies were retained after 1 hour of
treatment at 95°C and subsequent cooling to
25°C (Fig. 3, F and H, and fig. S17).
To evaluate the accuracy of our design strat-

egy, we determined the structures of SEC-
purified RC_I_1 and RC_I_2 capsid particles
using cryo-EM (Fig. 4 and fig. S18). For RC_I_1,
3D reconstruction yielded a 2.5-Å-resolution
cryo-EM atomic model that closely matched
the computational design (Fig. 4, A and B,
and fig. S19). The N-terminal helices of two
monomers pack in an antiparallel fashion to
form the primarily hydrophobic C2 interface,
whereas the two helices near the C terminus
form the C5 interface with their neighbors
(Fig. 4, B and C). Small apertures (diameter
~13 Å) present at the C3 axes of the capsid
make the N termini available for genetic fu-

sion (Fig. 4C). Over the designed monomer,
the root mean square deviation (RMSD) be-
tween the cryo-EM structure and the design
model is 0.76 Å (Fig. 4D); a single rotamer
flip (Phe63) and tilting of the C-terminal helix
results in a slight expansion of the overall
cage diameter, resulting in an RMSD over all
60 subunits of 3.72 Å (Fig. 4E). For RC_I_2, the
2.9-Å cryo-EM structure of design RC_I_2 was
even closer to the design model (Fig. 4, F and
G, and fig. S20), with RMSDs at the C2 and C5
interfaces of 0.66 and 0.27 Å, respectively
(Fig. 4H). The RC_I_2 monomer adopts the
designed three-helical bundle foldwith a 0.59-Å
RMSD to the design model (Fig. 4I), and the
overall assembly is almost identical to the
design model with a 1.39-Å RMSD over all
60 subunits (Fig. 4J). The C2 interface is
situated near the extended C terminus of the
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Fig. 2. Disk-nanopore design with symmetric MCTS. (A) Schematic
illustration of MCTS-based sampling to build space-filling connectors between
two concentric rings to generate disk-like structures with different nanopore
inner diameters. The inner ring was placed in the center of a host outer ring,
varying the rotation and vertical offset, which generates different void volumes
(teal; middle panel above arrows). MCTS was then performed to densely fill these
void volumes (blue). (B) Design models (left column) and nsEM 3D ab initio

reconstruction maps (right column) of two connected disk-nanopores (RNR_C6_1
and RNR_C6_2). The symmetric MCTS sampling built helices to connect the
inner ring C terminus and outer ring N terminus (highlighted in red and blue,
respectively, in the left column). (C) The cryo-EM map at 5.1-Å resolution
for design RNR_C6_3 viewed from the top, bottom, and side is very close to
the design model, with a narrow circular pore in the center of an otherwise
nonporous disk-like structure.
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monomer, allowing for potential monomeric
or dimeric genetic fusions. The C5 pentameric
interface is mediated by interactions between
the N-terminal helices, which point inward
and enable functionalization of the interior of
the capsid. With diameters of 13 and 10 nm for
RC_I_1 and RC_I_2, respectively, and associ-
ated monomer lengths of 67 and 54 residues,
the designed mini-capsids are considerably
smaller than most viral capsids.

Applications of top-down–designed capsids

The compact size and corresponding small
exterior surface area of the designed parti-

cles enables the display of 60 or 120 copies
of N- and/or C-terminal fused proteins with
exceptionally high density: six or more times
higher than previously designed icosahedral
cages. We set out to explore whether this higher
density could lead to greater biological effi-
cacy in signaling and vaccine applications.
We began by exploring the robustness of the
designs to substantial sequence changes and
to fusion of proteins to their outward-facing
termini.
To evaluate robustness to sequence changes,

we used ProteinMPNN (37) to generate diverse
sequences for the RC_I_1 capsid backbone, and

the designs were filtered using the AF and
Rosetta metrics described above. Two of six
experimentally tested ProteinMPNNdesigns,
RC_I_1-H9 and RC_I_1-H11 (the former de-
signed by ProteinMPNN using the working
capsid backbone Ca coordinates as input, the
latter the idealized polyA backbone without
any backbone optimization and relaxation),
assembled into the designed I1 symmetric
capsid as evidenced by IMAC, SEC, and nsEM.
A 3-Å cryo-EM structure of RC_I_1-H11 was
almost identical to the design model, with a
monomeric RMSD of 0.60 Å (Fig. 5A and fig.
S21) and a very low full-cage RMSD over all
60 subunits of only 0.96 Å. RC_I_1-H9 and
RC_I_1-H11 have on average 46% sequence
divergence from the parent capsid and 30%
sequence difference from each other, includ-
ing highly diverse interface residue selec-
tions (fig. S22; for example, the errant Phe63

of the parent capsid was redesigned to Glu63

in RC_I_1-H11, likely accounting at least in
part for the closer agreement of RC_I_1-11
with the design model). These results dem-
onstrate that the RL approach can generate
directly designable protein backbone geome-
tries with a high degree of accuracy.
We evaluated the robustness of the designs

to genetic fusion by fusing SpyTag, SpyCatcher
(42), and green fluorescent protein (GFP) pro-
teins to the RC_I_1-H11 capsid with an N-
terminal (GGS)n linker (Fig. 5B and figs. S23
to S25). In all cases, SEC elution profiles and
nsEM micrographs showed monodisperse
particles of the expected size and shape (see
the materials and methods). The 2D class av-
erages (inset) revealed spherical structures
similar to that of the original icosahedral
capsid, with additional density at the periphery
of the particles, consistent with fused pro-
teins connected to scaffolds through a flexible
linker. Unlike a larger cage, nuclear localiza-
tion sequence–tagged capsids fused to GFP
are efficiently translocated into the nucleus,
opening the door to nuclear delivery of high-
valency protein and DNA-organizing constructs
(fig. S26).
To assess the efficacy of the designed cap-

sids in activating cellular signaling pathways
by clustering cell surface receptors, we fused
60 copies of the angiopoietin 1 (Ang1) F do-
main (Fd), which binds the Tie2 receptor, to
RC_I_1-H11 using SpyTag-SpyCatcher conjuga-
tion (14, 18, 43) (see the materials and methods
and fig. S27). We found that the F domain–
displaying capsids had very high potency in
driving FOXO1 exclusion from the nucleus
(Fig. 5, C and D), activating the AKT pathway
(Fig. 5D and fig. S28, A to C) and stabilizing
nascent blood vessels formed from human um-
bilical vein endothelial cells (HUVECs; Fig. 5E)
(43–49). The Fd-displaying capsids (0.16 nM
RC_I_1-H11-Fd) elicited stronger responses
than a 10-fold greater concentration of a much
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Fig. 3. Experimental characterization of designed capsids RC_I_1 and RC_I_2. (A and B) Representative
nsEM micrographs and reference-free 2D class averages (inset) for RC_I_1 (left) and RC_I_2 (right). Scale bar,
200 nm. (C and D) A single peak was observed for each SEC elution profile near the expected elution
volumes for the target complexes. (E and G) Capsid computational design models. (F and H) Circular
dichroism spectra measured at different temperatures (°C).
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larger F-domain–presenting icosahedral nano-
particle (I53-50) (12, 43); the elevated potency
likely results from the higher surface display
density [to facilitate comparison, concentra-
tions at the bottom of Fig. 5D are in terms of
Fd monomer (0.16 nM capsid × 60 Fd copies
per capsid = 10 nM Fd)]. The 0.16 nM (10 nM
Fd) capsid also elicited stronger responses

than 100 nM Ang1. The F domain–displaying
capsid is thus an exceptionally potent Tie2-
activating ligand. The designed capsid is also
far easier to produce and much more stable
than Ang1 and thus could be useful in stim-
ulating differentiation and regeneration.
The high surface presentation density en-

abled by the designed scaffolds provides a route

to investigating the effect of packing density
on the elicitation of immune responses by
nanoparticle-based immunogens. As a first
step in this direction, we fused trimeric in-
fluenza hemagglutinin (HA) to the N termi-
nus of I1-capsid RC_I_1 using a (GS)6 linker.
The fusion protein was expressed and sec-
reted frommammalian cells and clearly forms
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Fig. 4. Near-atomic resolution cryo-EM structures of designed capsids
match design models. (A) A 2.5-Å cryo-EM reconstruction of RC_I_1 viewed
along the three symmetry axes. Scale bar, 20 Å. (B) Cryo-EM structure of RC_I_1
highlighting monomer packing and interfaces along each symmetry axis.
(C) Overlay and RMSD calculations for RC_I_1 compared with the design model
for each symmetry interface (cryo-EM is shown in blue; design is shown in gray).
(D) Overlay and RMSD calculation for a single monomer of RC_I_1. (E) Overlay and

RMSD calculation for the entire 60-mer RC_I_1 capsid. (F) A 2.9-Å cryo-EM
reconstruction of RC_I_2 viewed along the three symmetry axes. Scale bar, 20 Å.
(G) Cryo-EM structure of RC_I_2 highlighting monomer packing and interfaces along
each symmetry axis. (H) Overlay and RMSD calculations for RC_I_2 compared
with the design model for each symmetry interface (cryoEM is shown in pink; design
is shown in gray). (I) Overlay and RMSD calculation for a single monomer of
RC_I_2. (J) Overlay and RMSD calculation for the entire RC_I_2 capsid.
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HA-displaying particles according to SEC and
nsEM (fig. S29 and Fig. 5F). Biolayer interfer-
ometry showed binding of both 5J8 [anti-HA
head antibody (50)] and CR9114 [anti-HA
stem antibody (51)] immunoglobulin G to
HA capsids (Fig. 5G), indicating that the

HA remains antigenically intact when dis-
played on the surface of the capsids. We im-
munized mice with HA-displaying RC_I_1, as
well as amuch larger icosahedral immunogen,
HA-I53_dn5 (52), which has previously been
shown to elicit protective responses against

influenza and is currently being evaluated in
clinical trials (53).We found thatHA-displaying
RC_I_1 elicited a strong antibody response
against vaccine-matched HA that was greater
than that produced by the clinical vaccine can-
didate by a small but statistically significant
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Fig. 5. Applications of designed capsids. (A) Robustness of RC_I_1 capsid to
sequence redesign using ProteinMPNN. The 3-Å-resolution cryo-EM reconstruc-
tion of RC_I_1-H11 (top) reveals a close agreement between the experimental
structure (purple) and the design model (gray) with a RMSD of 0.96 Å. The
RC_I_1-H11 structure is nearly identical to RC_I_1 despite considerable sequence
differences [bottom; residue differences are highlighted in red (RC_I_1-H11)
and teal (RC_I_1)]. (B) From top to bottom, models and representative nsEM
images of spyTag-, spyCatcher-, and GFP-fused (to N terminus) RC_I_1-H11 with
2D class averages. Scale bar, 50 nm. (C and D) RC_I_1-H11-Fd activates Tie2
downstream Akt phosphorylation and FOXO1 translocation. Serum-starved
HUVECs were treated with serially diluted RC_I_1-H11-Fd (1000-0.1 nM), Fd-st
(100 nM), Ang1 (100 nM), I53-50 (100 nM), or phosphate-buffered saline (PBS)
control for 15 min before protein lysate collection for Western blot analysis, or
cells were fixed for FOXO1 antibody stain. (C) Left, representative confocal
images of HUVECs immunofluorescence stained with FOXO1 antibody. Right,
quantification showing the percentage of cells with nuclear FOXO1; 100 cells were
counted in each biological replicate. Levels of significance were compared with
PBS control in the FOXO1 graph. (D) Quantification of Western blot showing

pAKT signal normalized to RC_I_1-H11-Fd at 10 nM. RC_I_1-H11-Fd induces a
significantly higher signal than the previously characterized I53-50-Fd (inset) at
100 nM Fd equivalent. (E) Quantification of vascular stability by averaging the
number of nodes, meshes, and tubes calculated at the 72-hour time point using the
Angiogenesis Analyzer plug-in in ImageJ (fig. S28D). In (C) to (E), P values were
calculated using one-way ANOVA with Bonferroni’s multiple-comparisons test in
Prism for comparing groups of two or more; *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001; significance over PBS control is noted as # in (D). (F) Representative
nsEM micrograph and 2D class averages (inset) of mammalian cell secreted RC_I_1
particle flexibly fused with M15 influenza HA (MI15-RC_I_1). Scale bar, 50 nm.
(G) The RC_I_1 displayed HA is antigenically intact, reacting with both head (5J8)
and stem (CR9114) anti-HA antibodies in biolayer interferometry experiments.
(H) Models of RC_I_1 (top) and I53_dn5 (bottom) displaying MI15 influenza HA (left);
the presentation is considerably denser in the former. Top right: Mouse immunization
schedule. Bottom right: HA-specific antibody titers in immune sera. Statistical
significance was determined using one-way ANOVA with Tukey’s multiple-
comparisons test; *P < 0.05; ****P < 0.0001. The RC_I_1 display format produces a
higher antibody titer than the I53_dn5 nanoparticle currently in clinical trials.
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amount (Fig. 5H). These results indicate that
the high antigen presentation density enabled
by top-down design can yield robust immune
responses.

Conclusion

Our top-downRL approach enables the solution
of design challenges inaccessible to previous
bottom-up design methods. Cryo-EM struc-
tures confirm the design of 54- and 67-residue
proteins that assemble into 60-subunit icosa-
hedra with both internal monomer and over-
all assembly structure nearly identical to the
computational models, and of disk-shaped
nanopores generated by densely filling the
space between cyclic protein rings with differ-
ent diameters. Both the icosahedra and the
disk designs are distinct from any previously
designed or naturally occurring structures; the
former have smaller subunits, smaller radii,
and lower porosities, and the latter have nar-
row central pores within large, circular, other-
wise nonporous structures. These structures
could not have been built with previous bottom-
up approaches. For the icosahedra, generating
the shape complementarity of the interfaces
requires the context of the full capsid struc-
ture, possible only through a top-down ap-
proach, and for the disks, densely filling a
prescribed volume from preexisting building
blocks is generally not possible. The density
of protein chains and termini available for
fusion to the icosahedra is considerably greater
than the most compact previously designed
assembly, enabling fusion to functional protein
domains to generate bioactive nanoparticles.
The Ang1 F domain–displaying capsids are
potent activators of angiogenesis, and the in-
fluenza HA–displaying capsids elicit strong
anti-HA antibody responses in mice. The capa-
bility of theMCTS approach to optimize any set
of specified geometric criteria in a top-down
fashion provides a route to potent, multivalent
cellular receptor agonists and vaccines that are
custom designed to rigidly scaffold immunogen
or receptor-binding monomers and precisely
position them relative to one another. More
generally, our results demonstrate the power
of RL for protein design, which we expect can
be increased further by the incorporation of
policy and value networks (30–32, 54) to fur-
ther guide the search.
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Complex architectures by top-down design
Designing artificial protein complexes based on components with established structural properties can impose limits
on the properties of the final complex. Lutz et al. developed methods for generating complex protein architectures
that adhere to preordained parameters using reinforcement learning. They demonstrated this approach by generating
designs that fill arbitrary volumes, including a symmetrical connector between previously designed protein rings. A
small protein designed to assemble into 60-subunit icosahedra may be useful for presenting antigens in vaccines
or signaling molecules in multivalent agonist complexes, as the authors demonstrate in preliminary biological
experiments. —MAF
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