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Atomically accurate de novo design of 
antibodies with RFdiffusion

Nathaniel R. Bennett1,2,3,21, Joseph L. Watson1,2,21 ✉, Robert J. Ragotte1,2,21 ✉, Andrew J. Borst1,2,21, 
DéJenaé L. See1,2,4,21, Connor Weidle1,2,21, Riti Biswas1,2,3,21, Yutong Yu5,6,7,21, Ellen L. Shrock1,2, 
Russell Ault8,9, Philip J. Y. Leung1,2,3, Buwei Huang1,2,4, Inna Goreshnik1,2,10, John Tam11, 
Kenneth D. Carr1,2, Benedikt Singer1,2, Cameron Criswell1,2, Basile I. M. Wicky1,2, Dionne Vafeados2, 
Mariana Garcia Sanchez2, Ho Min Kim12,13, Susana Vázquez Torres1,2,14, Sidney Chan2, 
Shirley M. Sun15,16, Timothy T. Spear17, Yi Sun15,16, Keelan O’Reilly17, John M. Maris9,17, 
Nikolaos G. Sgourakis15,16, Roman A. Melnyk11,18, Chang C. Liu5,6,19,20 & David Baker1,2,10 ✉

Despite the central role of antibodies in modern medicine, no method currently exists 
to design novel, epitope-speci!c antibodies entirely in silico. Instead, antibody 
discovery currently relies on immunization, random library screening or the isolation 
of antibodies directly from patients1. Here we demonstrate that combining 
computational protein design using a !ne-tuned RFdi"usion2 network with yeast 
display screening enables the de novo generation of antibody variable heavy chains 
(VHHs), single-chain variable fragments (scFvs) and full antibodies that bind to user- 
speci!ed epitopes with atomic-level precision. We experimentally characterize VHH 
binders to four disease-relevant epitopes. Cryo-electron microscopy con!rms the 
binding pose of designed VHHs targeting in$uenza haemagglutinin and Clostridium 
di!cile toxin B (TcdB). A high-resolution structure of the in$uenza-targeting VHH 
con!rms atomic accuracy of the designed complementarity-determining regions 
(CDRs). Although initial computational designs exhibit modest a%nity (tens to hundreds 
of nanomolar Kd), a%nity maturation using OrthoRep3 enables production of single- 
digit nanomolar binders that maintain the intended epitope selectivity. We further 
demonstrate the de novo design of scFvs to TcdB and a PHOX2B peptide–MHC 
complex by combining designed heavy-chain and light-chain CDRs. Cryo-electron 
microscopy con!rms the binding pose for two distinct TcdB scFvs, with high-resolution 
data for one design verifying the atomically accurate design of the conformations  
of all six CDR loops. Our approach establishes a framework for the computational 
design, screening and characterization of fully de novo antibodies with atomic-level 
precision in both structure and epitope targeting.

Antibodies are the dominant class of protein therapeutics, with over 
160 antibody therapeutics currently licensed globally and a market 
value expected to reach US$445 billion in the next 5 years4. Antibody 
development generally proceeds in two stages: (1) the discovery of anti-
bodies that bind to a specific epitope; and (2) the subsequent affinity 
maturation and clinical optimization of those antibodies. Currently, 
identifying epitope-specific antibodies relies on animal immunization 
or screening of antibody libraries to identify candidate molecules that 

bind to a desired target, followed by subsequent epitope mapping. 
These methods are laborious, time-consuming and can fail to identify 
antibodies that interact with the therapeutically relevant epitope1. 
Efforts at computational design of antibodies have generally focused 
on the second optimization step of antibody development, such as 
sampling alternative native CDR loops to improve affinities5,6 or using 
Rosetta7 sequence design to improve the interacting regions. More 
recently, structure-based and sequence-based deep learning networks 
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have been trained to design novel antibody sequence variants8–10, but 
these methods require an initial binding antibody from which to opti-
mize. There have also been recent advances in antibody optimization 
with deep learning methods trained on data generated by powerful new 
experimental methods11,12. By contrast, computational methods able to 
perform the first stage of antibody design (generating epitope-specific 
binding antibodies) do not exist, and de novo (no homology to an exist-
ing antibody targeting that epitope) design of antibodies therefore 
remains an unsolved problem. There has been rapid progress in design-
ing binding proteins (not antibodies) using RFdiffusion2,13,14. However, 
as with other methods for de novo interface design15–17, these binders 
almost exclusively rely on regular secondary structure-based (helical or 
strand) interactions with the target epitope, and the original (‘vanilla’) 
RFdiffusion network is therefore unable to design antibodies de novo 
(Supplementary Fig. 1; see ref. 18).

An ideal method for designing de novo antibodies would ena-
ble: (1) targeting of any specified epitope on any target of interest;  
(2) focusing of sampling on the CDR loops, keeping the framework 
sequence and structure close to a user-specified highly optimized 
therapeutic antibody framework; and (3) sampling of alternative rigid- 
body placements of the designed antibody with respect to the epitope. 
We hypothesized that a specialized version of RFdiffusion fine-tuned 
on antibody structures should be capable of designing de novo 
CDR-mediated interfaces, given the diversity and quality of de novo 
interfaces that RFdiffusion can design and given that the underlying 
thermodynamics of interface formation are the same, and set out to 
develop such a method.

Training RFdiffusion for antibody design
RFdiffusion uses the AlphaFold2 (ref. 19) and RF2 frame representation 
of protein backbones comprising the Cα coordinate and N-Cα-C rigid 
orientation for each residue. During training, a noising schedule is used 
that, over a set number of ‘timesteps’ (T), corrupts the protein frames 
towards random prior distributions (Cα coordinates are corrupted 
with three-dimensional Gaussian noise, and residue orientations with 
Brownian motion on SO3). During training, a Protein Data Bank (PDB) 
structure and a random timestep (t) are sampled, and t noising steps 
are applied to the structure. RFdiffusion predicts the de-noised (pX0) 
structure at each timestep, and a mean squared error loss is minimized 
between the true structure (X0) and the prediction (pX0). At inference 
time, a random residue distribution (XT) is sampled, and RFdiffusion 
iteratively de-noises this to generate novel protein structures.

We fine-tuned RFdiffusion predominantly on antibody complex 
structures (Fig. 1; see Methods in Supplementary Information). At each 
step of training, the antibody structure is corrupted. To permit speci-
fication of the framework structure and sequence at inference time, 
the framework sequence and structure are provided as conditioning 
input to RFdiffusion during training (Fig. 1b). Because it is desirable 
for the rigid-body position (dock) between antibody and target to be 
designed by RFdiffusion along with the CDR loop conformations, the 
framework structure is provided in a global-frame-invariant manner 
during training (Fig. 1c). We utilize the ‘template track’ of RF2/RFdiffu-
sion to provide the framework structure as a two-dimensional matrix 
of pairwise distances and dihedral angles between each pair of resi-
dues (a representation from which three-dimensional structures can 
be accurately recapitulated)20 (Supplementary Fig. 1a). The frame-
work and target templates do not encode their relative positions in 
the three-dimensional space. In this work, we kept the sequence and 
structure of the framework region fixed, and focused on the design of 
the CDRs and the overall rigid-body placement of the antibody to the 
target. We trained RFdiffusion with an additional one-hot encoded 
‘hotspot’ feature, which provides some fraction of the residues that 
the antibody CDRs interact with, such that at inference, we can direct 
antibodies towards a specific site (Fig. 1d; we refer to these sites as 

‘epitopes’ throughout the remainder of the text). For simplicity, we 
refer to this fine-tuned version of the network as RFdiffusion for the 
remainder of this paper. 

With this training regime, RFdiffusion is able to design antibody 
structures that closely match the structure of the input framework 
structure and target the specified epitope with novel CDR loops (Sup-
plementary Fig. 1). After the RFdiffusion step, we use ProteinMPNN 
to design the CDR loop sequences. The designed antibodies make 
diverse interactions with the target epitope and differ significantly 
from sequences in the training dataset (Extended Data Fig. 1). There 
was no correlation between training dataset similarity and binding 
success (Extended Data Fig. 1a, red lines).

Fine-tuning RF2 for antibody validation
Design pipelines typically produce a wide range of solutions to any 
given design challenge. An effective way to filter designed proteins and 
interfaces that are most likely to succeed experimentally is based on 
the similarity of the designed structure to the AlphaFold2-predicted 
structure for the designed sequence (this is often referred to as ‘self- 
consistency’), which has been shown to correlate well with experimen-
tal success21,22. In the case of antibodies, however, AlphaFold2 fails to 
accurately predict antibody–antigen structures23, preventing its use as 
a filter in an antibody design pipeline, and at the outset of this project, 
AlphaFold3 (ref. 24) was not available.

We sought to improve design filtering by fine-tuning RoseTTAFold2 
on antibody structures. To simplify antibody structure prediction, we 
provided information during training about the structure of the target 
and the location of the target epitope to which the antibody binds; the 
fine-tuned RF2 must still correctly model the CDRs and find the correct 
orientation of the antibody to the targeted region. The rationale for 
providing this information is that the target structure and binding loca-
tion are available during design (but are typically not available during 
general structure prediction). With this training regimen and additional 
information, RF2 is able to robustly distinguish true antibody–antigen 
pairs from decoy pairs and often accurately predicts antibody–antigen 
complex structures, but only when the bound (holo) conformation of 
the target structure and epitope information is provided (Extended 
Data Fig. 2a–d). At monomer prediction, the fine-tuned RF2 outper-
formed previous models available at the time, especially at CDR H3 
structure prediction (Extended Data Fig. 2e,f).

When this fine-tuned RF2 network is used to re-predict the structure 
of RFdiffusion-designed VHHs, a significant fraction are confidently 
predicted to bind in an almost identical manner to their designed struc-
ture (Extended Data Fig. 3a). Furthermore, in silico cross-reactivity 
analyses demonstrated that RFdiffusion-designed VHHs are rarely 
predicted to bind to unrelated proteins (Extended Data Fig. 3b). VHHs 
that are confidently predicted to bind to their designed target are pre-
dicted to form high-quality interfaces, as measured by Rosetta ddG 
(Extended Data Fig. 3c). This indicates that RF2 filtering might enrich 
for experimentally successful binders.

Design and characterization of VHHs
We initially focused on the design of single-domain antibodies (VHHs) 
produced by camelids25. To date, two VHH-based therapies have been 
approved by the FDA with many clinical trials ongoing25. Despite hav-
ing fewer CDR loops (three) than conventional antibodies (six), the 
average interaction surface area of a VHH is very similar to that of an 
antibody26, suggesting that a method capable of VHH design could also 
be suitable for antibody design. Indeed, in silico metrics for scFvs and 
VHHs showed similar qualities of interfaces, as assessed by Rosetta7 
and fine-tuned RF2 (Extended Data Fig. 3b–f).

We chose a widely used humanized VHH framework (h-NbBcII10F-
GLA)27 as the basis of our VHH design campaigns, and designed VHHs 
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Fig. 1 | Overview of RFdiffusion for antibody design. a, RFdiffusion is  
trained such that at time T, a sample is drawn from the prior distribution 
(three-dimensional Gaussian distribution for translations and uniform SO3 
distribution for rotations), and de-noised between times T and 0 to generate  
an (in this case) scFv. b, The antibody framework is provided as a sequence and 
‘template’ to RFdiffusion; the latter specifying the pairwise distances and 
dihedral angles between framework residues. For example, one can specify the 
design of a VHH (top) or scFv (bottom). c, Diversity in the antibody–target dock 
is achieved because the framework template does not encode the rigid body 
framework–target relationship. Diverse docking modes are sampled by 
RFdiffusion. d, The epitope is specified by provision of ‘hotspot’ residues, 
which direct the designed antibody (compare orange, left, versus pink, right). 
e, Overview of the computational design pipeline described in this article. 
RFdiffusion performs the backbone design step, given a target, epitope 

hotspots and antibody framework. ProteinMPNN designs only the sequence  
of the CDR residues (not the framework residues). Fine-tuned RoseTTAFold2 
predicts the structure of the designed antibody, given the target (sequence, 
structure and, optionally, some fraction of hotspot residues) and designed 
antibody sequence. Self-consistency (high similarity between predicted and 
designed structures) and high confidence (low predicted alignment error) 
define in silico success. Note that AlphaFold3, not available at the time of this 
work, is a better predictor of success than RoseTTAFold2. f, The contribution  
of this work is the epitope-specific antibody design pipeline depicted in panel  
e. Several methods can be used to experimentally validate designs and 
subsequently affinity-mature or optimize them. In this work, we used yeast 
surface display and/or E. coli expression with SPR for experimental validation 
(taking approximately 6 weeks and 2 weeks post-oligonucleotide order, 
respectively), and OrthoRep affinity maturation.
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to a range of disease-relevant targets: C. difficile TcdB, influenza H1 hae-
magglutinin, respiratory syncytial virus (RSV) sites I and III, SARS-CoV-2 
receptor-binding domain (RBD) and IL-7Rα. Computationally filtered 
designs were screened either at high throughput by yeast surface dis-
play (9,000 designs per target; RSV sites I and III, RBD and influenza 
haemagglutinin) or at lower throughput with Escherichia coli expres-
sion and single-concentration surface plasmon resonance (SPR; 95 
designs per target; TcdB, IL-7Rα and influenza haemagglutinin; the 
latter was screened using both methods).

The highest affinity binders to RSV site III, influenza haemagglu-
tinin, RBD and TcdB are shown in Fig. 2a–c,e, respectively (see also 
Supplementary Fig. 2 for all the SPR traces of confirmed VHH binders 
identified in this study and Supplementary Methods Table 6 for success 
rates against each target, which range from 0% to 2%). The CDR loops 
are distinct from VHHs observed in nature, indicating substantial gen-
eralization beyond the training dataset (Extended Data Fig. 1). Of the 
haemagglutinin binders tested against the insect-cell-produced hae-
magglutinin monomer, the highest affinity binder had a dissociation 
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Fig. 2 | Biochemical characterization of designed VHHs. a,b, Nine thousand 
designed VHHs were screened against RSV site III (a; VHH_RSV_01) and influenza 
haemagglutinin (b; VHH_flu_01) with yeast surface display, before soluble 
expression of the top hits in E. coli. SPR demonstrated that the highest affinity 
VHHs to RSV site III and influenza haemagglutinin bound their respective 
targets with 1.4 µM and 78 nM, respectively. c, Nine thousand VHH designs 
were tested against the SARS-CoV-2 RBD, and after soluble expression, SPR 
confirmed an affinity of 5.5 µM to the target for design VHH_RBD_D4 (left). 
Binding was to the expected epitope, confirmed by competition with a 

structurally confirmed de novo binder (AHB2 (PDB ID 7UHB), right).  
d, Ninety-five VHH designs were tested against C. difficile TcdB. The highest 
affinity VHH, VHH_TcdB_H2, bound with 262 nM affinity (left), and also 
competed with a structurally confirmed de novo binder (FZD48, PDB ID 9CM5 
(ref. 29)) to the same epitope (right). See also Extended Data Fig. 4a–c for 
quantification of the competition shown in panels c,d. For all panels, the 
measured binding response is indicated in a solid blue line, and the global fit 
using a 1:1 binding interaction model is indicated with a black dashed line.

http://doi.org/10.2210/pdb7uhb/pdb
https://doi.org/10.2210/pdb9CM5/pdb
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constant (Kd) of 78 nM (Fig. 2b), with other binders having affinities of 
546 nM, 698 nM and 790 nM. For TcdB, the target epitope was the Friz-
zled interface, for which there are no antibodies or VHHs targeting this 
site in the PDB. For the best-designed VHH from both RBD (Kd = 5.5 µM; 
Fig. 2c) and TcdB (Kd = 260 nM; Fig. 2d), binding was confirmed to be to 
the desired epitope: binding was completely abolished upon addition 
of a previously designed, structurally characterized de novo binder to 
that epitope (AHB2 (PDB ID 7UHB28) for RBD and FZD48 (PDB ID 9CM5  
(ref. 29)) for TcdB; Fig. 2c,d and Extended Data Fig. 4a–c). This TcdB 
VHH also neutralized TcdB toxicity in CSPG4-knockout cells (an alterna-
tive TcdB receptor) with a half-maximal effective concentration (EC50) 
of 460 nM (Extended Data Fig. 4d,e). For TcdB, the interactions were 
specific, with no binding observed to the highly related (70% sequence 
homology) Paeniclostridium sordellii lethal toxin L (TcsL; Extended 
Data Fig. 4b). These data demonstrate the ability of RFdiffusion to 
design VHHs that make specific interactions with the target epitope.

Cryo-EM of a VHH-binding influenza haemagglutinin
We sought to evaluate design accuracy by cryo-electron micros-
copy (cryo-EM) structure determination of the designed anti- 
haemagglutinin VHHs in complex with natively glycosylated, trimeric 
influenza haemagglutinin glycoprotein (strain A/USA:Iowa/1943 
H1N1; Supplementary Fig. 4), which retains the conserved stem 
epitope used during computational VHH design and upstream bio-
chemical screening. Cryo-EM data processing revealed that one VHH 
design effectively bound to the fully glycosylated haemagglutinin 
trimer (out of the four tested), denoted hereafter as VHH_flu_01 (Fig. 3 
and Extended Data Fig. 5). Two-dimensional classification of all parti-
cles in the dataset (Fig. 3a) and the determined 3.0 Å structure of the 
complex (Fig. 3b and Supplementary Methods Table 10) identified 
approximately 66% of haemagglutinin particles bound to a maximum 
of two VHHs per trimer (Fig. 3a–h). This partial occupancy is prob-
ably attributable to the N296 glycan, which, in unbound subunits, 
partially occludes the target epitope but reorients when bound to 
VHH_flu_01 (see Fig. 3h).

The structure of influenza haemagglutinin bound to two copies of 
VHH_flu_01 (Fig. 3b,c and Extended Data Fig. 5) reveals a VHH approach 
angle that closely matches the predicted model (Fig. 3f) and a VHH back-
bone that is very close to the RFdiffusion design, with a calculated root 
mean square deviation (RMSD) of 1.45 Å (Fig. 3g). The CDR3 structure 
is also very similar between the cryo-EM structure and the computa-
tional model (RMSD = 0.8 Å; Fig. 3d), with residues V100, V101, S103 and 
F108 in the de novo-designed CDR3 loop interacting with the influenza 
haemagglutinin stem epitope in the cryo-EM structure, as designed by 
RFdiffusion and re-predicted with RF2 (Fig. 3e). The design is highly 
dissimilar from the closest antibody–VHH binding to this epitope in 
the PDB (Extended Data Fig. 1f,g and Supplementary Fig. 5). Together, 
these results demonstrate the VHH design with atomic-level precision.

Cryo-EM of VHHs to TcdB and SARS-CoV-2
To improve the binding affinity of de novo-designed VHHs, we utilized 
the orthogonal error-prone DNA replication system, OrthoRep, for con-
tinuous hypermutation of target genes in vivo30,31. OrthoRep has been 
shown to drive the rapid affinity maturation of yeast surface-displayed 
antibodies. We used this capability to affinity-mature VHHs target-
ing TcdB, influenza H1 haemagglutinin and the SARS-CoV-2 RBD. 
Affinity-matured VHHs acquired several mutations relative to the par-
ent designs and improved binding affinities by approximately two 
orders of magnitude (Supplementary Fig. 3), making them suitable 
candidates for downstream cryo-EM structural characterization.

For TcdB, our design campaign targeted the Frizzled-binding epitope 
located on the RBD. TcdB consists of four functional domains includ-
ing a central delivery and RBD (DRBD) where the VHHs were designed 

to bind. Cryo-EM characterization of the original parent design, 
VHH_TcdB_H2, confirmed that the VHH engages the target Frizzled 
DRBD epitope (Supplementary Fig. 7). Analysis via two-dimensional 
and three-dimensional classification revealed a mix of bound and 
unbound TcdB particles (Fig. 3i and Supplementary Figs. 6 and 7). 
Extensive three-dimensional classification and local refinement identi-
fied multiple structural states of TcdB within the dataset, including an 
extended bound state (Extended Data Fig. 6 and Supplementary Fig. 8). 
Three-dimensional refinement of the bound VHH in the extended TcdB 
state yielded a modest 4.6 Å map, into which the design model was con-
fidently rigid-body docked, showing high agreement with the intended 
design structure (Fig. 3i–k). To evaluate whether the improved affin-
ity achieved through OrthoRep preserved the original binding mode 
of the parent design, we performed additional cryo-EM analysis on 
the affinity-matured VHH, VHH_TcdB_H2_ortho. These experiments 
revealed a high proportion of TcdB particles now bound by the VHH, 
consistent with its enhanced affinity (Fig. 3l–n and Supplementary 
Fig. 3b). Using a similar processing pipeline as for the parent VHH–TcdB 
complex, we resolved the affinity-matured VHH–TcdB complex to a 
modest 5.7 Å resolution, enabling us to confidently dock the designed 
VHH into the cryo-EM density with close agreement. This confirmed 
that the VHH maintained targeting to the correct epitope and retained 
its original binding pose after OrthoRep-mediated affinity matura-
tion (Fig. 3l–n and Extended Data Fig. 6). These results underscore 
the capability of RFdiffusion to design accurate de novo VHHs that 
are capable of targeting previously unexplored epitopes and are ame-
nable to downstream affinity maturation.

We next used cryo-EM to characterize an affinity-matured VHH (VHH_
RBD_D4_ortho19) targeting the SARS-CoV-2 spike RBD, where competi-
tion experiments indicated that the parental VHH bound the intended 
epitope (Fig. 2c, Extended Data Fig. 4c and Supplementary Figs. 3b 
and 9). The RBD transitions between ‘up’ and ‘down’ conformations, 
with the ‘up’ state enabling receptor binding and viral entry32. Cryo-EM 
two-dimensional class averages and three-dimensional classification 
reconstructions of the VHH-bound complex revealed a mixture of RBD 
conformations (1–2 ‘up’), with VHH density observed exclusively in 
the up state. This is consistent with its design, as the target epitope is 
occluded in the down conformation (Supplementary Fig. 9a,b). Global 
refinement with an average estimated resolution of 3.9 Å provided 
well-defined density for the lower portion of the spike protein (local 
resolution of approximately 2.5 Å), but the relative flexibility of the 
RBD resulted in substantial signal averaging, causing density loss at 
higher contour levels, which precluded assessment of VHH design 
accuracy (Supplementary Fig. 9c–e). Symmetry expansion and local 
refinement helped improve the resolution of the RBD–VHH interface, 
confirming the intended VHH fold and accurate epitope targeting fol-
lowing rigid-body docking of the design model into the density map 
(Supplementary Fig. 9f,g), in agreement with our biochemical competi-
tion data (Fig. 2c). However, although the VHH bound the correct RBD 
epitope, its binding mode deviated notably from the design model, 
instead adopting a predominantly framework-mediated interaction 
that more closely matched retrospective AlphaFold3 predictions (Sup-
plementary Fig. 9g,h). Owing to the deviation between the designed 
dock and the experimentally determined dock, we classified this as a 
design failure.

Design of scFvs with six designed CDRs
Given the success of RFdiffusion at designing VHHs with three de novo 
CDRs, we next tested its ability to design both heavy and light chains in 
scFv format. RFdiffusion was used to generate scFvs targeting specific 
epitope sites, following a strategy similar to the VHH design approach. 
However, unlike VHHs, where only three CDRs were built de novo, scFv 
design involved constructing all six CDRs on both the heavy and the 
light chains in addition to the docking mode.

https://doi.org/10.2210/pdb7UHB/pdb
https://doi.org/10.2210/pdb9CM5/pdb
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Fig. 3 | Cryo-EM structural characterization of de novo-designed VHH 
binding to influenza haemagglutinin and TcdB. a, Labelled cryo-EM two- 
dimensional class averages of designed VHH_flu_01 bound to influenza 
haemagglutinin (HA) strain A/USA:Iowa/1943 H1N1. b, The 3.0 Å cryo-EM three- 
dimensional reconstruction shows VHH_flu_01 bound to H1 along the stem in 
two protomers. c, Cryo-EM structure of VHH_flu_01 bound to influenza 
haemagglutinin. d, Superposition of the designed VHH CDR3 structure with the 
cryo-EM structure. e, Comparison of predicted CDR3 rotamers compared with 
the built 3.0 Å cryo-EM structure. f,g, The cryo-EM structure closely matches the 
design. h, Examination of apo haemagglutinin protomers juxtaposed with those 
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class averages of the designed VHH, VHH_TcdB_H2, bound to full-length TcdB.  
j, The 4.6 Å cryo-EM three-dimensional reconstruction of the complex shows 
VHH_TcdB_H2 bound to the target epitope as predicted. CROPs, combined 
repetitive oligopeptides; GTD, glucosyltransferase domain. k, Owing to the 

modest resolution, a fragment of TcdB was first docked into the cryo-EM 
density map, and the full design model—including both the TcdB fragment and 
the designed VHH—was then aligned to the pre-fitted TcdB fragment. The 
predicted design closely matches the experimentally determined complex in 
structure, epitope targeting and overall conformation. l, Labelled cryo-EM 
two-dimensional class averages of the designed VHH, VHH_TcdB_H2_ortho, 
bound to full-length TcdB. m, The 5.7 Å cryo-EM three-dimensional 
reconstruction of the complex shows that VHH_TcdB_H2_ortho bound the 
target epitope as predicted. n, A TcdB fragment was docked into the cryo-EM 
map, followed by alignment of the full model including the OrthoRep- 
matured VHH. The resulting structure shows no detectable change in binding 
orientation or docking angle compared with the original design, indicating that 
OrthoRep maturation preserved the predicted mode of epitope engagement. In 
all panels: yellow indicates haemagglutinin; grey denotes the computational 
design prediction; pink or navy shows VHH (cryo-EM); and teal indicates glycan.
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The gene synthesis problem is more formidable for scFvs than for 
VHHs as they are too long to be simply assembled from pairs of con-
ventional oligonucleotides synthesized on oligonucleotide arrays, 
and are challenging to uniquely pair due to high sequence homol-
ogy between scFvs. We developed stepwise assembly protocols that 
enable the construction of libraries with heavy and light chains either 
specifically paired as in the design models (Supplementary Figs. 10 
and 11) or combinatorially mixed within subsets of designs specifi-
cally with similar target-binding modes (Supplementary Fig. 12). The 
latter approach helps to overcome the greater challenge of accurate 
design of six CDRs de novo, which increases the possibilities for error 
compared with the VHH problem as only one suboptimal CDR can 
compromise binding. We found that given sets of nearly superimpos-
able designs targeting the same site with the same binding mode, new 
scFvs generated by combining pairs of heavy and light chains from 
different designs were confidently predicted to bind to the target site 
in the designed binding mode at similar frequencies as compared 
to the original designs (Extended Data Fig. 7a). By contrast, random, 
structure-agnostic pairing rarely led to predicted binders (Extended 
Data Fig. 7a). Hence, by mixing CDRs from different designs that bind 
in the same orientation, we can effectively overcome failures due to 
single imperfectly designed CDRs, thereby offering a combinatorial 
solution to a combinatorially more complex problem (two-chain scFv 
design versus one-chain VHH design). This strategy highlights a key 
advantage of structure-based design: ‘intelligent’ pairing of heavy and 
light chains is possible with a structural model of every antibody, and 
allows de novo-designed antibody libraries to reach scales attainable 
by traditional library assembly methods, despite current limits in gene  
synthesis.

We succeeded in identifying epitope-specific scFvs from the heavy–
light combinatorial libraries (of a theoretical complexity of approxi-
mately 10 million; Extended Data Figs. 7b,c and 8a–c) but not the fixed 
pairing libraries (Supplementary Fig. 13). Following expression and 
purification, SPR analysis of six distinct scFvs originating from two 
unique docks targeting the Frizzled epitope of TcdB revealed a range 
of affinities (Fig. 4d–h): the highest affinity binder, scFv6, had a Kd of 
72 nM (Fig. 4g). Conversion of the scFv to a full length IgG1 generated 
antibodies that bind with comparable (68 nM) affinity, demonstrating 
that our design method can be used to generate full-length antibodies 
(Fig. 4i). There are no antibodies binding to this epitope in the PDB, 
hence, this success cannot be attributed to memorization. Subse-
quent prediction of the structure of the scFv with AlphaFold3 showed 
a binding mode identical to that of the two nearly superimposable 
parent designs that contributed the light and heavy chains (Supple-
mentary Fig. 16c,d). Competition with a known receptor, Frizzled-7, 
to this epitope confirmed that binding of scFv5 was on target (Fig. 4j). 
By contrast, no competition was seen in the presence of CSPG4, an 
alternative receptor that interacts with an epitope at the toxin core. 
Thus, scFvs targeting user-specified epitopes can be identified from 
structure-aware designed combinatorial libraries.

We next targeted a clinically relevant epitope: the QYNPIRTTF pep-
tide derived from the PHOX2B neuroblastoma-dependency gene and 
master transcriptional regulator in complex with the major histocom-
patibility complex (MHC) allotype HLA-C*07:02 (we refer to this pep-
tide below simply as PHOX2B). The PHOX2B peptide was originally 
discovered by immunopeptidomics of neuroblastoma patient-derived 
samples, and has been targeted with peptide-centric chimeric anti-
gen receptors (PC-CARs) for treating high-risk neuroblastoma33. How-
ever, the PC-CARs identified previously are restricted to recognizing 
PHOX2B presented on HLAs of the A9 serological group, excluding 
the common allotype HLA-C*07:02 (ref. 34). Targeting the PHOX2B–
HLA-C*07:02 complex could meaningfully increase the addressable 
patient population for these immunotherapies, and has been the focus 
of ongoing therapeutics development. Recently, computationally 
designed (non-antibody) binders for PHOX2B–HLA-C*07:02 have 

been developed, using the TRACeR-I system35, whereas high-affinity 
TCRs have been identified for targeting peptides on the common 
HLA-C*08:02/HLA-C*05:01 allotypes36. A benefit of structure-based 
design is the ability to target specific peptide residues to achieve 
binding specificity (rather than binding only to the MHC), and we 
therefore used RFdiffusion to target the R6 residue, which is known 
to be important for binding in the PC-CAR34. Given the low stability of 
the PHOX2B–HLA-C*07:02 complex (Tm of 44.2 °C)34, we leveraged a 
disulfide-stabilized approach to prepare a stabilized form of the pHLA 
target37. Using the combinatorial assembly approach described above, 
we identified modest-affinity (400 nM as measured by SPR and 1 µM 
as measured by isothermal titration calorimetry (ITC); Fig. 4k,l and 
Extended Data Fig. 8e–g) scFv binders to PHOX2B–HLA-C*07:02. Bind-
ing was specific to the peptide, with no detectable binding to the R6A 
point mutant PHOX2B peptide (PHOX2B(R6A)–HLA-C*07:02; Fig. 4l). 
Attempts were made to incorporate scFv binders into a 4-1BB-CAR, 
but T cell cytotoxicity assays demonstrated no detectable killing of a 
range of neuroblastoma cell lines (Supplementary Fig. 14), probably 
because of the modest binding affinity and/or low levels of antigen 
density expressed on the tumour cells. Although there is still consider-
able room for improvement in affinity, this demonstrates the ability 
of structure-based antibody design, paired with appropriate library 
assembly methods, to design specific binders to challenging and clini-
cally important target epitopes.

Atomically accurate scFv design to TcdB
To evaluate the accuracy of de novo scFv design, we determined the 
cryo-EM structures of two combinatorially assembled scFvs, scFv5 and 
scFv6, both targeting the Frizzled epitope of TcdB. Cryo-EM analysis 
confirmed that both scFvs bound the Frizzled epitope as designed 
(Fig. 5 and Extended Data Fig. 9). High-resolution two-dimensional 
class averages of scFv6 revealed clear density for both TcdB and the 
bound scFv, further supported by a 3.6 Å three-dimensional recon-
struction (Fig. 5a,b and Extended Data Fig. 9). The resolved structure 
showed that scFv6 engaged the Frizzled epitope along its DRBD domain 
with the predicted binding orientation (Fig. 5d and Supplementary 
Methods Table 10). Superposition of the cryo-EM structure with the 
design model demonstrated remarkable agreement, with both heavy 
and light chains interacting with the epitope as intended (Fig. 5c and 
Supplementary Fig. 16a,b). The overall fold closely matched the design, 
a composite model of the two chains originating from distinct but 
structurally similar designs (RMSD = 0.9 Å), and each of the six CDRs 
exhibited near-atomic precision (backbone RMSDs: CDRH1 = 0.4 Å, 
CDRH2 = 0.3 Å, CDRH3 = 0.7 Å, CDRL1 = 0.2 Å, CDRL2 = 1.1 Å and 
CDRL3 = 0.2 Å; Fig. 5e,f). This agreement extended to the rotameric 
conformations of CDR side chains and their interactions with the Friz-
zled epitope, underscoring the accuracy of RFdiffusion in designing 
de novo scFv–target interactions (Fig. 5g).

scFv5 was designed to bind to the same epitope but with a distinct 
approach angle relative to scFv6 (Fig. 4b,c). A 6.1 Å cryo-EM recon-
struction confirmed scFv5 binding to the TcdB Frizzled epitope, with 
two-dimensional class averages showing clear density for the complex 
(Fig. 5h and Supplementary Fig. 15). Rigid-body docking of the design 
model into the cryo-EM density revealed close agreement between the 
predicted-binding and experimentally determined-binding modes 
(Fig. 5i,j).

Improved oracles increase success rate
Although our results demonstrate that the de novo design of antibodies 
is possible, the experimental success rates remain low. A key contribu-
tor to previous successes in de novo binder design was improved filters 
(primarily AlphaFold2 (ref. 19), which enriched for experimental success 
in the subset of designs that are tested experimentally2,22. At the outset 
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of this study, we sought to build such a filter by fine-tuning RoseTTA-
Fold2 (Extended Data Figs. 2 and 3), but the filtering power of this model 
is limited (at least with the settings used; providing 100% of interface 

‘hotspots’). This probably accounts for the low experimental success 
rates and the inaccurate SARS-CoV-2 design, where the overall fold and 
epitope targeting were correct, but the binding orientation was not.
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Fig. 4 | Biochemical characterization of combinatorially assembled scFvs 
with six designed CDRs. a, Multiple sequence alignment of six scFvs that bind 
to TcdB. scFvs 1–5 originate from the same structural cluster, whereas scFv6 
originates from a distinct cluster. b,c, AlphaFold3 predictions of scFv5 (b) and 
scFv6 (c) in complex with TcdB. scFv5 and scFv6 are predicted to bind to a 
similar but not identical epitope. The predicted orientation of scFv6 relative to 
TcdB is rotated compared with scFv5. d, Affinity of scFv5 to TcdB was 460 nM by 
SPR. e, Computational prediction of the scFv5–TcdB interface for VH (variable 
heavy-chain fragment; left) and VL (variable light-chain fragment; right).  
f, scFv5, when expressed as a full-length IgG1, shows a binding affinity of 380 nM 
to TcdB by SPR. g, Affinity of scFv6 to TcdB was 72 nM by SPR. h, Computational 
prediction of the scFv6–TcdB interface for VH (left) and VL (right). i, scFv6, when 
expressed as a full-length IgG1, shows a binding affinity of 68 nM to TcdB by SPR. 
j, scFv5 competes with Frizzled-7 and does not compete with CSPG4, indicating 

on-target binding. scFv5 was conjugated to a CM5 chip and TcdB RBD was 
flowed over at 50 nM either alone or mixed with 1 µM of Frizzled-7, CSPG4 or 
scFv5. k,l, SPR comparative analysis of B1.2.1 binding to C*07:02–PHOX2B 
versus C*07:02–PHOX2B(R6A). scFv was immobilized and then on-target and 
off-target binding was measured across an eight-step, twofold titration with an 
upper concentration of 5 µM. Steady-state kinetic analysis (k) and raw SPR trace 
(l) of on-target and off-target binding indicate specific binding to the intended 
target. m, AlphaFold3 predictions of HLA-C*07:02 with peptide PHOX2B (left) 
and PHOX2B(R6A) (right). R6 of PHOX2B is predicted to be solvent exposed.  
n, AlphaFold3 prediction of scFv B1.2.1 in complex with C*07:02–PHOX2B (left). 
Predicted polar contacts with R6 of the PHOX2B peptide (right), mediated by 
CDRH3, CDRL1 and CDRL2, are also shown. Figure was created using BioRender 
(http://biorender.com).

http://biorender.com
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Subsequent to the design work in this study, AlphaFold3 (ref. 24) 
was released and has improved antibody structure prediction accu-
racy24,38, both with24,38 and without38 antigen present. Retrospectively, 
we can assess how filtering with AlphaFold3 would have improved 
experimental success rates. First, AlphaFold3 accurately predicts 
the experimentally validated structure of the inaccurately designed 
SARS-CoV-2 VHH (Supplementary Fig. 9). Had AlphaFold3 been used 

as an initial filter, this design would have been rejected due to the 
discrepancy between the predicted and intended structures, thereby 
preventing its experimental testing. Second, we predicted the struc-
tures of the SARS-CoV-2, influenza haemagglutinin, TcdB and IL-7Rα 
VHH designs using AlphaFold3 with a multiple sequence alignment 
(MSA) and templates for the target and only a template for the VHH (as 
CDRs are de novo, we reasoned the MSA would be of limited utility). 
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Fig. 5 | Cryo-EM structural characterization of two TcdB-binding scFvs.  
a, Labelled cryo-EM two-dimensional class averages of a designed scFv, scFv6, 
bound to TcdB. b, A 3.6 Å cryo-EM three-dimensional reconstruction of the 
complex shows scFv6 bound to TcdB along the Frizzled epitope. c, The cryo-EM 
structure of scFv6 in complex with TcdB closely matches the design model.  
d, Cryo-EM structure of scFv6 bound to TcdB. e, Cryo-EM reveals the accurate 
design of scFv6 using RFdiffusion. f, Superposition of each of the six designed 
scFv6 CDR loop predicted structures as compared with the built cryo-EM 
structure. g, Comparison of predicted CDRH3 rotamers compared with the 
built 3.6 Å cryo-EM structure. h, Labelled cryo-EM two-dimensional class 
averages of the designed scFv, scFv5, bound to full-length TcdB. i, A 6.1 Å 

cryo-EM three-dimensional reconstruction of the complex shows the scFv5 
bound to the target epitope as predicted. j, Owing to the modest resolution,  
a fragment of TcdB was first docked into the cryo-EM density map, and the full 
design model—including both the TcdB fragment and the designed scFv—was 
then aligned to the pre-fitted TcdB fragment. This approach demonstrates that 
the predicted design closely matches the experimentally determined complex 
in structure, epitope targeting and overall conformation. In models, yellow 
denotes TcdB; navy indicates the variable heavy-chain fragment (cryo-EM); 
pink shows the variable light-chain fragment (cryo-EM); and grey denotes the 
computational design prediction.
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We analysed the predictions for libraries with at least one structurally 
validated VHH (TcdB, influenza haemagglutinin and SARS-CoV-2). 
These results are dominated by anti-haemagglutinin VHHs as the 
majority of successful binders came from this library. We found that 
the AlphaFold3 interface predicted template modelling (ipTM) score, a 
measure of model confidence over the interface, is predictive of bind-
ing success (area under the curve = 0.86; Extended Data Fig. 10a,b). 
Overall, only 9% of our ordered VHH designs have an ipTM > 0.6, sug-
gesting that success rate will be improved by incorporation of an ipTM 
filter. We ran a similar analysis for the combinatorially assembled scFv 
libraries; we predicted the structures of the parental scFv designs 
(before combinatorial assembly) and the experimentally confirmed 
scFv designs (combinatorially assembled) using AlphaFold3 with an 
MSA for the target sequence and templates for the target as well as the 
heavy and light chains, taking the maximum ipTM score over 10 seeds. 
We found that successful designs cluster to higher AlphaFold3 ipTM 
scores than the parental designs (Extended Data Fig. 10c). Only 4% 
of the initial design library has ipTM > 0.85, whereas 5 out of the 6 
experimentally confirmed designs pass this threshold, again suggest-
ing that filtering by AlphaFold3 ipTM should increase success rates 
(Extended Data Fig. 10d).

Discussion
Our results demonstrate that de novo design of antibody domains tar-
geting specific epitopes on a target is possible. The cryo-EM structural 
data for the designed VHHs to influenza haemagglutinin and TcdB 
reveals very close agreement to the computational design models, 
showing that our approach can design VHH complexes with atomic 
accuracy—including the highly variable H3 loop and the overall binding 
orientation—that are highly dissimilar from any known structures in 
the PDB. Moreover, cryo-EM structural data of designed scFvs bound to 
TcdB demonstrate the ability of RFdiffusion to design two-chain scFvs 
accurately. To our knowledge, these are the first structurally validated 
cases of de novo-designed antibodies.

Our computational method synergizes with experimental screening 
approaches developed for retrieving antibodies from large random 
libraries in several ways. First, yeast display selection methods widely 
used for antibody library screening enable the retrieval of the high-
est affinity binders among large sets of designs, which is currently 
necessary due to the quite low design success rate. Second, screening 
combinatorial libraries that mix heavy and light chains from designs 
with similar binding modes allows for the identification of scFvs com-
posed of structurally compatible chains targeting specific epitopes, as 
demonstrated here for TcdB and PHOX2B–peptide MHC. Third, affinity 
maturation using OrthoRep3 improves the measured affinity of initial 
VHH designs down to the single-digit nanomolar or subnanomolar 
range, while preserving the original designed-binding mode. From a 
practical standpoint, the key advance of this work is not the ability to 
generate VHHs and scFvs against a target—something often achiev-
able through purely experimental methods—but rather the ability to 
accurately target specific binding epitopes. The epitope specificity 
is critical for therapeutic applications such as antagonists that block 
receptor–ligand interactions, antibodies that avoid competing with 
endogenous molecules, modulators that induce conformational 
changes to trigger signalling, or antibodies targeting conserved or 
evolutionarily restricted viral epitopes.

There remains considerable room for improvement. For the back-
bone design step, incorporating recent architectural improvements39 
and new advances in generative modelling40–42 may yield design 
models with higher designability and diversity. RoseTTAFold2 and 
RFdiffusion have also recently been extended to model all biomol-
ecules (rather than just proteins)43, and incorporating this capabil-
ity into the antibody design RFdiffusion variant should permit the 
accurate design of antibodies to epitopes containing non-protein 

atoms, such as glycans. ProteinMPNN was not modified in this cur-
rent work, but designing sequences that more closely match human 
CDR sequences would be expected to reduce the potential immu-
nogenicity of designed antibodies44,45. Indeed, designed sequences 
are currently somewhat less human (as assessed by an OASis score46) 
than therapeutic antibody CDRs (Supplementary Fig. 1d). Further 
improvements in antibody structure prediction methods should 
allow faster optimization of upstream design methods and improve 
experimental success rates.

Ultimately, computational de novo design of antibodies using our 
RFdiffusion and related approaches47 could revolutionize antibody 
discovery and development. As the method improves and success rates 
increase, it has the potential to be faster and more cost-effective than 
immunizing animals or screening random libraries. A structure-based 
approach to antibody design should also aid the optimization of 
key pharmaceutical properties, such as aggregation, solubility and 
expression levels (all major challenges in antibody development) in a 
structure-informed manner. Together, we expect that computational 
design of antibodies will increase the number of tractable clinical tar-
gets and diseases accessible to antibody therapeutics.
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