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Atomically accurate de novo design of
antibodies with RFdiffusion
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Despite the central role of antibodies in modern medicine, no method currently exists
to design novel, epitope-specific antibodies entirely in silico. Instead, antibody
discovery currently relies onimmunization, random library screening or the isolation
of antibodies directly from patients'. Here we demonstrate that combining
computational protein design using a fine-tuned RFdiffusion? network with yeast
display screening enables the de novo generation of antibody variable heavy chains
(VHHSs), single-chain variable fragments (scFvs) and full antibodies that bind to user-
specified epitopes with atomic-level precision. We experimentally characterize VHH
binders to four disease-relevant epitopes. Cryo-electron microscopy confirms the
binding pose of designed VHHs targeting influenza haemagglutinin and Clostridium
difficiletoxin B (TcdB). A high-resolution structure of the influenza-targeting VHH
confirms atomic accuracy of the designed complementarity-determining regions
(CDRs). Although initial computational designs exhibit modest affinity (tens to hundreds
of nanomolar Kj), affinity maturation using OrthoRep?® enables production of single-
digit nanomolar binders that maintain the intended epitope selectivity. We further
demonstrate the de novo design of scFvs to TcdB and a PHOX2B peptide-MHC
complex by combining designed heavy-chain and light-chain CDRs. Cryo-electron
microscopy confirms the binding pose for two distinct TcdB scFvs, with high-resolution
datafor one design verifying the atomically accurate design of the conformations

of all six CDR loops. Our approach establishes aframework for the computational
design, screening and characterization of fully de novo antibodies with atomic-level
precisioninboth structure and epitope targeting.

Antibodies are the dominant class of protein therapeutics, with over  bind to a desired target, followed by subsequent epitope mapping.
160 antibody therapeutics currently licensed globally and a market = These methods are laborious, time-consuming and can fail to identify
value expected to reach US$445 billion in the next S years*. Antibody  antibodies that interact with the therapeutically relevant epitope’.
development generally proceedsintwo stages: (1) the discovery ofanti-  Efforts at computational design of antibodies have generally focused
bodies that bind to a specific epitope; and (2) the subsequent affinity  on the second optimization step of antibody development, such as
maturation and clinical optimization of those antibodies. Currently, samplingalternative native CDR loops toimprove affinities* or using
identifying epitope-specific antibodies relies onanimal immunization ~ Rosetta’ sequence design to improve the interacting regions. More
or screening of antibody libraries to identify candidate moleculesthat  recently, structure-based and sequence-based deep learning networks
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have been trained to design novel antibody sequence variants®'°, but
these methods require aninitial binding antibody from which to opti-
mize. There have also been recent advances in antibody optimization
with deep learning methods trained on datagenerated by powerful new
experimental methods™? By contrast, computational methods able to
performthe first stage of antibody design (generating epitope-specific
binding antibodies) do not exist, and de novo (no homology to an exist-
ing antibody targeting that epitope) design of antibodies therefore
remains an unsolved problem. There has been rapid progress in design-
ing binding proteins (not antibodies) using RFdiffusion®*, However,
as with other methods for de novo interface design®> 7, these binders
almost exclusively rely onregular secondary structure-based (helical or
strand) interactions with the target epitope, and the original (‘vanilla’)
RFdiffusion network is therefore unable to design antibodies de novo
(Supplementary Fig.1; seeref. 18).

An ideal method for designing de novo antibodies would ena-
ble: (1) targeting of any specified epitope on any target of interest;
(2) focusing of sampling on the CDR loops, keeping the framework
sequence and structure close to a user-specified highly optimized
therapeutic antibody framework; and (3) sampling of alternative rigid-
body placements of the designed antibody with respect to the epitope.
We hypothesized that aspecialized version of RFdiffusion fine-tuned
on antibody structures should be capable of designing de novo
CDR-mediated interfaces, given the diversity and quality of de novo
interfaces that RFdiffusion can design and given that the underlying
thermodynamics of interface formation are the same, and set out to
develop such amethod.

Training RFdiffusion for antibody design

RFdiffusion uses the AlphaFold2 (ref.19) and RF2 frame representation
of protein backbones comprising the Ca coordinate and N-Ca-Crigid
orientation foreachresidue. During training, anoising scheduleis used
that, over aset number of ‘timesteps’ (T), corrupts the protein frames
towards random prior distributions (Ca coordinates are corrupted
with three-dimensional Gaussian noise, and residue orientations with
Brownian motion on SO3). Duringtraining, a Protein Data Bank (PDB)
structure and arandom timestep (¢) are sampled, and ¢ noising steps
are applied to the structure. RFdiffusion predicts the de-noised (pX;)
structure at eachtimestep, and amean squared error loss is minimized
between the true structure (X,,) and the prediction (pX,). Atinference
time, arandom residue distribution (X7) is sampled, and RFdiffusion
iteratively de-noises this to generate novel protein structures.

We fine-tuned RFdiffusion predominantly on antibody complex
structures (Fig. 1; see Methods in Supplementary Information). Ateach
step of training, the antibody structure is corrupted. To permit speci-
fication of the framework structure and sequence at inference time,
the framework sequence and structure are provided as conditioning
input to RFdiffusion during training (Fig. 1b). Because it is desirable
for the rigid-body position (dock) between antibody and target to be
designed by RFdiffusion along with the CDR loop conformations, the
framework structure is provided in a global-frame-invariant manner
duringtraining (Fig. 1c). We utilize the ‘template track’ of RF2/RFdiffu-
sionto provide the framework structure as a two-dimensional matrix
of pairwise distances and dihedral angles between each pair of resi-
dues (a representation from which three-dimensional structures can
be accurately recapitulated)® (Supplementary Fig. 1a). The frame-
work and target templates do not encode their relative positions in
the three-dimensional space. In this work, we kept the sequence and
structure of the framework region fixed, and focused on the design of
the CDRs and the overall rigid-body placement of the antibody to the
target. We trained RFdiffusion with an additional one-hot encoded
‘hotspot’ feature, which provides some fraction of the residues that
the antibody CDRs interact with, such that at inference, we can direct
antibodies towards a specific site (Fig. 1d; we refer to these sites as
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‘epitopes’ throughout the remainder of the text). For simplicity, we
refer to this fine-tuned version of the network as RFdiffusion for the
remainder of this paper.

With this training regime, RFdiffusion is able to design antibody
structures that closely match the structure of the input framework
structure and target the specified epitope with novel CDR loops (Sup-
plementary Fig. 1). After the RFdiffusion step, we use ProteinMPNN
to design the CDR loop sequences. The designed antibodies make
diverse interactions with the target epitope and differ significantly
from sequences in the training dataset (Extended Data Fig. 1). There
was no correlation between training dataset similarity and binding
success (Extended Data Fig. 1a, red lines).

Fine-tuning RF2 for antibody validation

Design pipelines typically produce a wide range of solutions to any
givendesign challenge. An effective way tofilter designed proteins and
interfaces that are most likely to succeed experimentally is based on
the similarity of the designed structure to the AlphaFold2-predicted
structure for the designed sequence (this is often referred to as ‘self-
consistency’), which hasbeen shownto correlate well with experimen-
tal success®?. In the case of antibodies, however, AlphaFold2 fails to
accurately predict antibody-antigen structures®, preventing its use as
afilterinanantibody design pipeline, and at the outset of this project,
AlphaFold3 (ref. 24) was not available.

We sought toimprove design filtering by fine-tuning RoseTTAFold2
onantibody structures. To simplify antibody structure prediction, we
provided information during training about the structure of the target
andthelocation of the target epitope to which the antibody binds; the
fine-tuned RF2 must still correctly model the CDRs and find the correct
orientation of the antibody to the targeted region. The rationale for
providingthisinformationis that the target structure and bindingloca-
tionareavailable during design (but are typically not available during
general structure prediction). With this training regimen and additional
information, RF2is able to robustly distinguish true antibody-antigen
pairs from decoy pairs and often accurately predicts antibody-antigen
complexstructures, but only when the bound (holo) conformation of
the target structure and epitope information is provided (Extended
Data Fig. 2a-d). At monomer prediction, the fine-tuned RF2 outper-
formed previous models available at the time, especially at CDR H3
structure prediction (Extended Data Fig. 2e,f).

When this fine-tuned RF2 network is used to re-predict the structure
of RFdiffusion-designed VHHs, a significant fraction are confidently
predicted to bind inan almostidentical manner to their designed struc-
ture (Extended Data Fig. 3a). Furthermore, in silico cross-reactivity
analyses demonstrated that RFdiffusion-designed VHHs are rarely
predicted tobind to unrelated proteins (Extended DataFig.3b). VHHs
thatare confidently predicted tobind to their designed target are pre-
dicted to form high-quality interfaces, as measured by Rosetta ddG
(Extended DataFig. 3c). This indicates that RF2filtering might enrich
for experimentally successful binders.

Design and characterization of VHHs
Weinitially focused on the design of single-domain antibodies (VHHs)
produced by camelids®. To date, two VHH-based therapies have been
approved by the FDA with many clinical trials ongoing®. Despite hav-
ing fewer CDR loops (three) than conventional antibodies (six), the
average interaction surface area of a VHH is very similar to that of an
antibody?, suggesting that amethod capable of VHH design could also
besuitable forantibody design. Indeed, in silico metrics for scFvs and
VHHs showed similar qualities of interfaces, as assessed by Rosetta’
and fine-tuned RF2 (Extended Data Fig. 3b-f).

We chose a widely used humanized VHH framework (h-NbBclI10F-
GLA)? as the basis of our VHH design campaigns, and designed VHHs
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trained such thatat time 7,asampleis drawn fromthe prior distribution
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distribution for rotations), and de-noised between times Tand O to generate
an (inthis case) scFv. b, The antibody framework is provided asasequence and
‘template’ to RFdiffusion; the latter specifying the pairwise distances and
dihedralangles between framework residues. For example, one can specify the
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e, Overview of the computational design pipeline described in this article.
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hotspotsand antibody framework. ProteinMPNN designs only the sequence
ofthe CDRresidues (not the framework residues). Fine-tuned RoseTTAFold2
predictsthe structure of the designed antibody, given the target (sequence,
structure and, optionally, some fraction of hotspot residues) and designed
antibody sequence. Self-consistency (high similarity between predicted and
designed structures) and high confidence (low predicted alignment error)
defineinsilicosuccess. Note that AlphaFold3, not available at the time of this
work, isabetter predictor of success than RoseTTAFold2. f, The contribution
of this work s the epitope-specific antibody design pipeline depicted in panel
e.Several methods canbe used to experimentally validate designs and
subsequently affinity-mature or optimize them. In this work, we used yeast
surface display and/or E. coli expression with SPR for experimental validation
(taking approximately 6 weeks and 2 weeks post-oligonucleotide order,
respectively), and OrthoRep affinity maturation.
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Fig.2|Biochemical characterization of designed VHHs. a,b, Nine thousand
designed VHHs were screened against RSV site Il (a; VHH_RSV_01) and influenza
haemagglutinin (b; VHH_flu_01) with yeast surface display, before soluble
expression of the top hitsin £. coli. SPR demonstrated that the highest affinity
VHHs to RSV site Il and influenza haemagglutinin bound their respective
targetswith1.4 pMand 78 nM, respectively. ¢, Nine thousand VHH designs
weretested against the SARS-CoV-2RBD, and after soluble expression, SPR
confirmed an affinity of 5.5 uM to the target for design VHH_RBD_D4 (left).
Binding was to the expected epitope, confirmed by competition witha

toarange of disease-relevant targets: C. difficile TcdB, influenza H1 hae-
magglutinin, respiratory syncytial virus (RSV) sites land Ill, SARS-CoV-2
receptor-binding domain (RBD) and IL-7Ra. Computationally filtered
designs were screened either at high throughput by yeast surface dis-
play (9,000 designs per target; RSV sites I and Ill, RBD and influenza
haemagglutinin) or at lower throughput with Escherichia coli expres-
sion and single-concentration surface plasmon resonance (SPR; 95
designs per target; TcdB, IL-7Ra and influenza haemagglutinin; the
latter was screened using both methods).
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structurally confirmed de novo binder (AHB2 (PDBID 7UHB), right).

d, Ninety-five VHH designs were tested against C. difficile TcdB. The highest
affinity VHH, VHH_TcdB_H2, bound with 262 nM affinity (left), and also
competed with astructurally confirmed de novo binder (FZD48, PDBID 9CM5
(ref.29)) to the same epitope (right). See also Extended Data Fig. 4a-c for
quantification of the competition shownin panels c¢,d. For all panels, the
measured binding responseisindicated inasolid blue line, and the global fit
usingal:1bindinginteraction modelisindicated with ablack dashed line.

The highest affinity binders to RSV site Ill, influenza haemagglu-
tinin, RBD and TcdB are shown in Fig. 2a—-c,e, respectively (see also
Supplementary Fig. 2 for all the SPR traces of confirmed VHH binders
identified in this study and Supplementary Methods Table 6 for success
rates against each target, which range from 0% to 2%). The CDR loops
aredistinct from VHHs observedin nature, indicating substantial gen-
eralization beyond the training dataset (Extended Data Fig. 1). Of the
haemagglutinin binders tested against the insect-cell-produced hae-
magglutinin monomer, the highest affinity binder had a dissociation
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constant (K,) of 78 nM (Fig. 2b), with other binders having affinities of
546 nM, 698 nM and 790 nM. For TcdB, the target epitope was the Friz-
zledinterface, for which there are no antibodies or VHHs targeting this
siteinthe PDB. For the best-designed VHH fromboth RBD (K, = 5.5 uM;
Fig.2c) and TcdB (K; =260 nM; Fig. 2d), binding was confirmed tobe to
the desired epitope: binding was completely abolished upon addition
ofapreviously designed, structurally characterized de novo binder to
thatepitope (AHB2 (PDBID 7UHB?) for RBD and FZD48 (PDB ID 9CM5
(ref. 29)) for TcdB; Fig. 2¢,d and Extended Data Fig. 4a—c). This TcdB
VHH also neutralized TcdB toxicity in CSPG4-knockout cells (an alterna-
tive TcdB receptor) with a half-maximal effective concentration (ECs,)
of 460 nM (Extended Data Fig. 4d,e). For TcdB, the interactions were
specific, withno binding observed to the highly related (70% sequence
homology) Paeniclostridium sordellii lethal toxin L (TcsL; Extended
Data Fig. 4b). These data demonstrate the ability of RFdiffusion to
design VHHs that make specific interactions with the target epitope.

Cryo-EM of a VHH-binding influenza haemagglutinin

We sought to evaluate design accuracy by cryo-electron micros-
copy (cryo-EM) structure determination of the designed anti-
haemagglutinin VHHs in complex with natively glycosylated, trimeric
influenza haemagglutinin glycoprotein (strain A/USA:lowa/1943
HINI1; Supplementary Fig. 4), which retains the conserved stem
epitope used during computational VHH design and upstream bio-
chemicalscreening. Cryo-EM data processing revealed that one VHH
design effectively bound to the fully glycosylated haemagglutinin
trimer (out of the four tested), denoted hereafter as VHH_flu_01 (Fig. 3
and Extended DataFig. 5). Two-dimensional classification of all parti-
clesin the dataset (Fig. 3a) and the determined 3.0 A structure of the
complex (Fig. 3b and Supplementary Methods Table 10) identified
approximately 66% of haemagglutinin particles bound to amaximum
of two VHHs per trimer (Fig. 3a-h). This partial occupancy is prob-
ably attributable to the N296 glycan, which, in unbound subunits,
partially occludes the target epitope but reorients when bound to
VHH _flu_01 (see Fig. 3h).

The structure of influenza haemagglutinin bound to two copies of
VHH_flu_01 (Fig. 3b,cand Extended Data Fig. 5) reveals a VHH approach
angle that closely matches the predicted model (Fig. 3f) and a VHH back-
bonethatis very close to the RFdiffusion design, witha calculated root
mean square deviation (RMSD) of 1.45 A (Fig. 3g). The CDR3 structure
is also very similar between the cryo-EM structure and the computa-
tionalmodel (RMSD = 0.8 A; Fig. 3d), withresidues V100, V101, S103 and
F108inthe de novo-designed CDR3 loop interacting with theinfluenza
haemagglutinin stemepitope in the cryo-EM structure, as designed by
RFdiffusion and re-predicted with RF2 (Fig. 3e). The design is highly
dissimilar from the closest antibody-VHH binding to this epitope in
the PDB (Extended Data Fig. 1f,g and Supplementary Fig. 5). Together,
these results demonstrate the VHH design with atomic-level precision.

Cryo-EM of VHHs to TcdB and SARS-CoV-2

Toimprove the binding affinity of de novo-designed VHHs, we utilized
the orthogonal error-prone DNA replication system, OrthoRep, for con-
tinuous hypermutation of target genes in vivo®>*., OrthoRep has been
showntodrive the rapid affinity maturation of yeast surface-displayed
antibodies. We used this capability to affinity-mature VHHs target-
ing TcdB, influenza H1 haemagglutinin and the SARS-CoV-2 RBD.
Affinity-matured VHHs acquired several mutations relative to the par-
ent designs and improved binding affinities by approximately two
orders of magnitude (Supplementary Fig. 3), making them suitable
candidates for downstream cryo-EM structural characterization.

For TcdB, our design campaign targeted the Frizzled-binding epitope
located on the RBD. TcdB consists of four functional domains includ-
ingacentral delivery and RBD (DRBD) where the VHHs were designed

to bind. Cryo-EM characterization of the original parent design,
VHH_TcdB_H2, confirmed that the VHH engages the target Frizzled
DRBD epitope (Supplementary Fig. 7). Analysis via two-dimensional
and three-dimensional classification revealed a mix of bound and
unbound TcdB particles (Fig. 3i and Supplementary Figs. 6 and 7).
Extensive three-dimensional classification and local refinementidenti-
fied multiple structural states of TcdB within the dataset, including an
extended bound state (Extended DataFig. 6 and Supplementary Fig. 8).
Three-dimensional refinement of the bound VHH in the extended TcdB
state yielded amodest 4.6 A map, into which the design model was con-
fidently rigid-body docked, showing high agreement with the intended
design structure (Fig. 3i-k). To evaluate whether the improved affin-
ity achieved through OrthoRep preserved the original binding mode
of the parent design, we performed additional cryo-EM analysis on
the affinity-matured VHH, VHH_TcdB_H2_ortho. These experiments
revealed a high proportion of TcdB particles now bound by the VHH,
consistent with its enhanced affinity (Fig. 3]-n and Supplementary
Fig.3b). Usingasimilar processing pipeline as for the parent VHH-TcdB
complex, we resolved the affinity-matured VHH-TcdB complex to a
modest 5.7 Aresolution, enabling us to confidently dock the designed
VHH into the cryo-EM density with close agreement. This confirmed
that the VHH maintained targeting to the correct epitope and retained
its original binding pose after OrthoRep-mediated affinity matura-
tion (Fig. 31-n and Extended Data Fig. 6). These results underscore
the capability of RFdiffusion to design accurate de novo VHHSs that
are capable of targeting previously unexplored epitopes and are ame-
nable to downstream affinity maturation.

We next used cryo-EM to characterize an affinity-matured VHH (VHH_
RBD_D4_orthol9) targeting the SARS-CoV-2 spike RBD, where competi-
tion experimentsindicated that the parental VHH bound the intended
epitope (Fig. 2c, Extended Data Fig. 4c and Supplementary Figs. 3b
and 9). The RBD transitions between ‘up’ and ‘down’ conformations,
with the ‘up’state enabling receptor binding and viral entry*. Cryo-EM
two-dimensional class averages and three-dimensional classification
reconstructions of the VHH-bound complex revealed a mixture of RBD
conformations (1-2 ‘up’), with VHH density observed exclusively in
the up state. This is consistent with its design, as the target epitope is
occludedinthe down conformation (Supplementary Fig. 9a,b). Global
refinement with an average estimated resolution of 3.9 A provided
well-defined density for the lower portion of the spike protein (local
resolution of approximately 2.5 A), but the relative flexibility of the
RBD resulted in substantial signal averaging, causing density loss at
higher contour levels, which precluded assessment of VHH design
accuracy (Supplementary Fig. 9c-e). Symmetry expansion and local
refinement helped improve the resolution of the RBD-VHH interface,
confirming the intended VHH fold and accurate epitope targeting fol-
lowing rigid-body docking of the design model into the density map
(SupplementaryFig. 9f,g), inagreement with our biochemical competi-
tiondata (Fig. 2c). However, although the VHH bound the correct RBD
epitope, its binding mode deviated notably from the design model,
instead adopting a predominantly framework-mediated interaction
that more closely matched retrospective AlphaFold3 predictions (Sup-
plementary Fig. 9g,h). Owing to the deviation between the designed
dock and the experimentally determined dock, we classified thisas a
design failure.

Design of scFvs with six designed CDRs

Giventhe success of RFdiffusion at designing VHHs with three de novo
CDRs, we next tested its ability to design both heavy and light chainsin
scFvformat. RFdiffusion was used to generate scFvs targeting specific
epitopesites, following astrategy similar to the VHH design approach.
However, unlike VHHs, where only three CDRs were built de novo, scFv
design involved constructing all six CDRs on both the heavy and the
light chains in addition to the docking mode.
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modestresolution, afragment of TcdB was first docked into the cryo-EM
density map, and the full design model—including both the TcdB fragment and
thedesigned VHH—was then aligned to the pre-fitted TcdB fragment. The
predicted design closely matches the experimentally determined complexin
structure, epitope targeting and overall conformation.1, Labelled cryo-EM
two-dimensional class averages of the designed VHH, VHH_TcdB_H2 _ortho,
bound to full-length TcdB. m, The 5.7 A cryo-EM three-dimensional
reconstruction of the complex shows that VHH_TcdB_H2_ortho bound the
target epitope as predicted.n, ATcdB fragment was docked into the cryo-EM
map, followed by alignment of the full model including the OrthoRep-
matured VHH. The resulting structure shows no detectable change in binding
orientation or docking angle compared with the original design, indicating that
OrthoRep maturation preserved the predicted mode of epitope engagement. In
all panels: yellow indicates haemagglutinin; grey denotes the computational
design prediction; pink or navy shows VHH (cryo-EM); and teal indicates glycan.



The gene synthesis problem is more formidable for scFvs than for
VHHs as they are too long to be simply assembled from pairs of con-
ventional oligonucleotides synthesized on oligonucleotide arrays,
and are challenging to uniquely pair due to high sequence homol-
ogy between scFvs. We developed stepwise assembly protocols that
enable the construction of libraries with heavy and light chains either
specifically paired as in the design models (Supplementary Figs. 10
and 11) or combinatorially mixed within subsets of designs specifi-
cally with similar target-binding modes (Supplementary Fig.12). The
latter approach helps to overcome the greater challenge of accurate
design of six CDRs de novo, which increases the possibilities for error
compared with the VHH problem as only one suboptimal CDR can
compromise binding. We found that given sets of nearly superimpos-
able designs targeting the same site with the same binding mode, new
scFvs generated by combining pairs of heavy and light chains from
different designs were confidently predicted to bind to the target site
in the designed binding mode at similar frequencies as compared
to the original designs (Extended Data Fig. 7a). By contrast, random,
structure-agnostic pairing rarely led to predicted binders (Extended
DataFig. 7a). Hence, by mixing CDRs from different designs that bind
in the same orientation, we can effectively overcome failures due to
single imperfectly designed CDRs, thereby offering a combinatorial
solutiontoacombinatorially more complex problem (two-chain scFv
design versus one-chain VHH design). This strategy highlights a key
advantage of structure-based design: ‘intelligent’ pairing of heavy and
light chains is possible with a structural model of every antibody, and
allows de novo-designed antibody libraries to reach scales attainable
by traditional library assembly methods, despite current limitsin gene
synthesis.

Wesucceeded inidentifying epitope-specific scFvs from the heavy-
light combinatorial libraries (of a theoretical complexity of approxi-
mately 10 million; Extended Data Figs. 7b,c and 8a-c) but not the fixed
pairing libraries (Supplementary Fig. 13). Following expression and
purification, SPR analysis of six distinct scFvs originating from two
unique docks targeting the Frizzled epitope of TcdB revealed a range
of affinities (Fig. 4d-h): the highest affinity binder, scFv6, had a K, of
72 nM (Fig. 4g). Conversion of the scFv to a full length IgG1 generated
antibodies that bind with comparable (68 nM) affinity, demonstrating
that our design method canbe used to generate full-length antibodies
(Fig. 4i). There are no antibodies binding to this epitope in the PDB,
hence, this success cannot be attributed to memorization. Subse-
quent prediction of the structure of the scFv with AlphaFold3 showed
abinding mode identical to that of the two nearly superimposable
parent designs that contributed the light and heavy chains (Supple-
mentary Fig. 16c,d). Competition with a known receptor, Frizzled-7,
tothisepitope confirmed that binding of scFv5was on target (Fig. 4j).
By contrast, no competition was seen in the presence of CSPG4, an
alternative receptor that interacts with an epitope at the toxin core.
Thus, scFvs targeting user-specified epitopes can be identified from
structure-aware designed combinatorial libraries.

We next targeted a clinically relevant epitope: the QYNPIRTTF pep-
tide derived from the PHOX2B neuroblastoma-dependency gene and
master transcriptional regulator in complex with the major histocom-
patibility complex (MHC) allotype HLA-C*07:02 (we refer to this pep-
tide below simply as PHOX2B). The PHOX2B peptide was originally
discovered by immunopeptidomics of neuroblastoma patient-derived
samples, and has been targeted with peptide-centric chimeric anti-
genreceptors (PC-CARs) for treating high-risk neuroblastoma®. How-
ever, the PC-CARs identified previously are restricted to recognizing
PHOX2B presented on HLAs of the A9 serological group, excluding
the common allotype HLA-C*07:02 (ref. 34). Targeting the PHOX2B-
HLA-C*07:02 complex could meaningfully increase the addressable
patient population for theseimmunotherapies, and has been the focus
of ongoing therapeutics development. Recently, computationally
designed (non-antibody) binders for PHOX2B-HLA-C*07:02 have

been developed, using the TRACeR-1 system®, whereas high-affinity
TCRs have been identified for targeting peptides on the common
HLA-C*08:02/HLA-C*05:01 allotypes®. A benefit of structure-based
design is the ability to target specific peptide residues to achieve
binding specificity (rather than binding only to the MHC), and we
therefore used RFdiffusion to target the R6 residue, which is known
tobeimportant for binding in the PC-CAR>. Given the low stability of
the PHOX2B-HLA-C*07:02 complex (T, of 44.2°C)**, we leveraged a
disulfide-stabilized approach to prepare a stabilized form of the pHLA
target®. Using the combinatorial assembly approach described above,
we identified modest-affinity (400 nM as measured by SPR and 1 pM
as measured by isothermal titration calorimetry (ITC); Fig. 4k,l and
Extended DataFig. 8e-g) scFv binders to PHOX2B-HLA-C*07:02. Bind-
ing was specific to the peptide, with no detectable binding to the R6A
point mutant PHOX2B peptide (PHOX2B(R6A)-HLA-C*07:02; Fig.41).
Attempts were made to incorporate scFv binders into a 4-1BB-CAR,
but T cell cytotoxicity assays demonstrated no detectable killing of a
range of neuroblastoma cell lines (Supplementary Fig. 14), probably
because of the modest binding affinity and/or low levels of antigen
density expressed on the tumour cells. Although there is still consider-
able room for improvement in affinity, this demonstrates the ability
of structure-based antibody design, paired with appropriate library
assembly methods, to design specific binders to challenging and clini-
callyimportant target epitopes.

Atomically accurate scFv designto TcdB

To evaluate the accuracy of de novo scFv design, we determined the
cryo-EM structures of two combinatorially assembled scFvs, scFv5 and
scFv6, both targeting the Frizzled epitope of TcdB. Cryo-EM analysis
confirmed that both scFvs bound the Frizzled epitope as designed
(Fig. 5 and Extended Data Fig. 9). High-resolution two-dimensional
class averages of scFv6 revealed clear density for both TcdB and the
bound scFv, further supported by a 3.6 A three-dimensional recon-
struction (Fig. 5a,b and Extended Data Fig. 9). The resolved structure
showed that scFv6 engaged the Frizzled epitope alongits DRBD domain
with the predicted binding orientation (Fig. 5d and Supplementary
Methods Table 10). Superposition of the cryo-EM structure with the
design model demonstrated remarkable agreement, with both heavy
and light chains interacting with the epitope as intended (Fig. 5c and
Supplementary Fig.16a,b). The overall fold closely matched the design,
a composite model of the two chains originating from distinct but
structurally similar designs (RMSD = 0.9 A), and each of the six CDRs
exhibited near-atomic precision (backbone RMSDs: CDRH1 =0.4 A,
CDRH2=0.3A, CDRH3=0.7A, CDRL1=0.2A, CDRL2=1.1A and
CDRL3 =0.2 A; Fig. 5,f). This agreement extended to the rotameric
conformations of CDRside chains and their interactions with the Friz-
zled epitope, underscoring the accuracy of RFdiffusion in designing
de novo scFv-target interactions (Fig. 5g).

scFv5 was designed to bind to the same epitope but with a distinct
approach angle relative to scFvé6 (Fig. 4b,c). A 6.1 A cryo-EM recon-
struction confirmed scFv5 binding to the TcdB Frizzled epitope, with
two-dimensional class averages showing clear density for the complex
(Fig. Shand Supplementary Fig. 15). Rigid-body docking of the design
modelinto the cryo-EM density revealed close agreement between the
predicted-binding and experimentally determined-binding modes
(Fig. 5i,j).

Improved oracles increase success rate

Althoughour results demonstrate that the de novo design of antibodies
ispossible, the experimental success rates remain low. A key contribu-
tor to previous successesin de novo binder design wasimproved filters
(primarily AlphaFold2 (ref.19), which enriched for experimental success
inthe subset of designs that are tested experimentally*?. At the outset
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Fig.4|Biochemical characterization of combinatorially assembled scFvs
withsix designed CDRs. a, Multiple sequence alignment of six scFvs that bind
to TcdB. scFvs1-5originate from the same structural cluster, whereas scFvé
originates fromadistinct cluster. b,c, AlphaFold3 predictions of scFv5 (b) and
scFvé6 (c) incomplex with TcdB. scFv5and scFvé6 are predicted tobindtoa
similar but notidentical epitope. The predicted orientation of scFvé relative to
TcdBisrotated compared with scFv5. d, Affinity of scFv5 to TcdB was 460 nM by
SPR. e, Computational prediction of the scFv5-TcdBinterface for VH (variable
heavy-chain fragment; left) and VL (variable light-chain fragment; right).
f,scFv5, whenexpressedas afull-length 1gGl, shows abinding affinity of 380 nM
to TcdB by SPR. g, Affinity of scFv6 to TcdB was 72 nM by SPR. h, Computational
prediction of the scFv6-TcdB interface for VH (left) and VL (right). i, scFvé6, when
expressed asafull-length1gGl, shows abinding affinity of 68 nM to TcdB by SPR.
Jj,scFvScompetes with Frizzled-7 and does not compete with CSPG4, indicating

of this study, we sought to build such a filter by fine-tuning RoseTTA-
Fold2 (Extended DataFigs.2and 3), but the filtering power of this model
is limited (at least with the settings used; providing 100% of interface
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on-target binding. scFv5 was conjugated toa CMS5 chip and TcdB RBD was
flowed over at 50 nM either alone or mixed with 1 puM of Frizzled-7, CSPG4 or
scFv5.k,1, SPR comparative analysis of B1.2.1binding to C*07:02-PHOX2B
versus C*07:02-PHOX2B(R6A). scFv wasimmobilized and then on-target and
off-target binding was measured across an eight-step, twofold titration with an
upper concentration of 5 pM. Steady-state kinetic analysis (k) and raw SPR trace
(1) of on-target and off-target binding indicate specific binding to theintended
target.m, AlphaFold3 predictions of HLA-C*07:02 with peptide PHOX2B (left)
and PHOX2B(R6A) (right). R6 of PHOX2B s predicted to be solvent exposed.

n, AlphaFold3 prediction of scFvB1.2.1in complex with C*07:02-PHOX2B (left).
Predicted polar contacts with R6 of the PHOX2B peptide (right), mediated by
CDRH3,CDRL1and CDRL2, are also shown. Figure was created using BioRender
(http://biorender.com).

‘hotspots’). This probably accounts for the low experimental success
ratesand theinaccurate SARS-CoV-2 design, where the overall fold and
epitope targeting were correct, but the binding orientation was not.
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Fig.5|Cryo-EMstructural characterization of two TcdB-binding scFvs.

a, Labelled cryo-EM two-dimensional class averages of adesigned scFv, scFv6,
boundtoTcdB.b,A3.6 A cryo-EM three-dimensional reconstruction of the
complex shows scFv6 bound to TcdB along the Frizzled epitope. ¢, The cryo-EM
structure of scFv6 in complex with TcdB closely matches the design model.

d, Cryo-EMstructure of scFv6 bound to TcdB. e, Cryo-EM reveals the accurate
design of scFv6 using RFdiffusion. f, Superposition of each of the six designed
scFv6 CDR loop predicted structures as compared with the built cryo-EM
structure.g, Comparison of predicted CDRH3 rotamers compared with the
built3.6 A cryo-EMstructure. h, Labelled cryo-EM two-dimensional class
averages of the designed scFv, scFv5, bound to full-length TcdB.i,A 6.1 A

Subsequent to the design work in this study, AlphaFold3 (ref. 24)
was released and has improved antibody structure prediction accu-
racy®**, both with***® and without®® antigen present. Retrospectively,
we can assess how filtering with AlphaFold3 would have improved
experimental success rates. First, AlphaFold3 accurately predicts
the experimentally validated structure of the inaccurately designed
SARS-CoV-2 VHH (Supplementary Fig. 9). Had AlphaFold3 been used

(comparison)

cryo-EMthree-dimensional reconstruction of the complex shows the scFvS
boundtothetargetepitopeas predicted. j, Owingto the modestresolution,
afragment of TcdB was first docked into the cryo-EM density map, and the full
design model—including both the TcdB fragment and the designed scFv—was
thenalignedto the pre-fitted TcdB fragment. This approach demonstrates that
the predicted design closely matches the experimentally determined complex
instructure, epitope targeting and overall conformation. Inmodels, yellow
denotes TcdB; navyindicates the variable heavy-chain fragment (cryo-EM);
pinkshows the variable light-chain fragment (cryo-EM); and grey denotes the
computational design prediction.

as an initial filter, this design would have been rejected due to the
discrepancy between the predicted and intended structures, thereby
preventing its experimental testing. Second, we predicted the struc-
tures of the SARS-CoV-2, influenza haemagglutinin, TcdB and IL-7Ra
VHH designs using AlphaFold3 with a multiple sequence alignment
(MSA) and templates for the target and only atemplate for the VHH (as
CDRs are de novo, we reasoned the MSA would be of limited utility).
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We analysed the predictions for libraries with at least one structurally
validated VHH (TcdB, influenza haemagglutinin and SARS-CoV-2).
These results are dominated by anti-haemagglutinin VHHs as the
majority of successful binders came from this library. We found that
the AlphaFold3interface predicted template modelling (ipTM) score, a
measure of model confidence over the interface, is predictive of bind-
ing success (area under the curve = 0.86; Extended Data Fig. 10a,b).
Overall, only 9% of our ordered VHH designs have anipTM > 0.6, sug-
gesting that success rate will beimproved by incorporationof anipTM
filter. We ran a similar analysis for the combinatorially assembled scFv
libraries; we predicted the structures of the parental scFv designs
(before combinatorial assembly) and the experimentally confirmed
scFv designs (combinatorially assembled) using AlphaFold3 with an
MSA for the target sequence and templates for the target as well as the
heavy and light chains, taking the maximumipTM score over 10 seeds.
We found that successful designs cluster to higher AlphaFold3 ipTM
scores than the parental designs (Extended Data Fig. 10c). Only 4%
of the initial design library has ipTM > 0.85, whereas 5 out of the 6
experimentally confirmed designs pass this threshold, again suggest-
ing that filtering by AlphaFold3 ipTM should increase success rates
(Extended Data Fig. 10d).

Discussion

Our results demonstrate that de novo design of antibody domains tar-
geting specific epitopes onatargetis possible. The cryo-EM structural
data for the designed VHHSs to influenza haemagglutinin and TcdB
reveals very close agreement to the computational design models,
showing that our approach can design VHH complexes with atomic
accuracy—includingthe highly variable H3 loop and the overall binding
orientation—that are highly dissimilar from any known structures in
the PDB. Moreover, cryo-EM structural data of designed scFvs bound to
TcdB demonstrate the ability of RFdiffusion to design two-chainscFvs
accurately. Toour knowledge, these are the first structurally validated
cases of de novo-designed antibodies.

Our computational method synergizes with experimental screening
approaches developed for retrieving antibodies from large random
librariesin several ways. First, yeast display selection methods widely
used for antibody library screening enable the retrieval of the high-
est affinity binders among large sets of designs, which is currently
necessary dueto the quite low design successrate. Second, screening
combinatorial libraries that mix heavy and light chains from designs
with similar binding modes allows for the identification of scFvs com-
posed of structurally compatible chains targeting specific epitopes, as
demonstrated here for TcdB and PHOX2B-peptide MHC. Third, affinity
maturation using OrthoRep®improves the measured affinity of initial
VHH designs down to the single-digit nanomolar or subnanomolar
range, while preserving the original designed-binding mode. From a
practical standpoint, the key advance of this work is not the ability to
generate VHHs and scFvs against a target—something often achiev-
able through purely experimental methods—but rather the ability to
accurately target specific binding epitopes. The epitope specificity
is critical for therapeutic applications such as antagonists that block
receptor-ligand interactions, antibodies that avoid competing with
endogenous molecules, modulators that induce conformational
changes to trigger signalling, or antibodies targeting conserved or
evolutionarily restricted viral epitopes.

Thereremains considerable room forimprovement. For the back-
bone design step, incorporating recent architecturalimprovements®
and new advances in generative modelling*®** may yield design
models with higher designability and diversity. RoseTTAFold2 and
RFdiffusion have also recently been extended to model all biomol-
ecules (rather than just proteins)*, and incorporating this capabil-
ity into the antibody design RFdiffusion variant should permit the
accurate design of antibodies to epitopes containing non-protein
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atoms, such as glycans. ProteinMPNN was not modified in this cur-
rent work, but designing sequences that more closely match human
CDR sequences would be expected to reduce the potential immu-
nogenicity of designed antibodies***. Indeed, designed sequences
are currently somewhat less human (as assessed by an OASis score*®)
than therapeutic antibody CDRs (Supplementary Fig. 1d). Further
improvements in antibody structure prediction methods should
allow faster optimization of upstream design methods and improve
experimental success rates.

Ultimately, computational de novo design of antibodies using our
RFdiffusion and related approaches* could revolutionize antibody
discovery and development. Asthe method improves and success rates
increase, it has the potential to be faster and more cost-effective than
immunizing animals or screeningrandom libraries. A structure-based
approach to antibody design should also aid the optimization of
key pharmaceutical properties, such as aggregation, solubility and
expression levels (all major challenges in antibody development) ina
structure-informed manner. Together, we expect that computational
design of antibodies will increase the number of tractable clinical tar-
gets and diseases accessible to antibody therapeutics.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of dataand code availability
are available at https://doi.org/10.1038/s41586-025-09721-5.

1. Wilson, P.C. & Andrews, S. F. Tools to therapeutically harness the human antibody
response. Nat. Rev. Immunol. 12, 709-719 (2012).

2. Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion.
Nature 620, 1089-1100 (2023).

3. Paulk, A. M., Williams, R. L. & Liu, C. C. Rapidly inducible yeast surface display for antibody
evolution with OrthoRep. ACS Synth. Biol. 13, 2629-2634 (2024).

4.  Lyu, X. etal. The global landscape of approved antibody therapies. Antib. Ther. 5,
233-257 (2022).

5. Sormanni, P., Aprile, F. A. & Vendruscolo, M. Rational design of antibodies targeting
specific epitopes within intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 112,
9902-9907 (2015).

6. Liu, X. et al. Computational design of an epitope-specific Keap1 binding antibody using
hotspot residues grafting and CDR loop swapping. Sci. Rep. 7, 41306 (2017).

7. Leaver-Fay, A. et al. ROSETTAS: an object-oriented software suite for the simulation and
design of macromolecules. Methods Enzymol. 487, 545-574 (2011).

8. Xie, X., Valiente, P. A, Lee, J. S., Kim, J. & Kim, P. M. Antibody-SGM, a score-based
generative model for antibody heavy-chain design. J. Chem. Inf. Model. 64, 6745-6757
(2024).

9. Eguchi, R.R. et al. Deep generative design of epitope-specific binding proteins by latent
conformation optimization. Preprint at bioRxiv https://doi.org/10.1101/2022.12.22.521698
(2022).

10. Shanehsazzadeh, A. et al. Unlocking de novo antibody design with generative artificial
intelligence. Preprint at bioRxiv https://doi.org/10.1101/2023.01.08.523187 (2023).

1. Porebski, B. T. et al. Rapid discovery of high-affinity antibodies via massively parallel
sequencing, ribosome display and affinity screening. Nat. Biomed. Eng. 8, 214-232
(2024).

12.  Agarwal, A. A. et al. AlphaBind, a domain-specific model to predict and optimize antibody-
antigen binding affinity. mAbs 17, 2534626 (2025).

13.  Véazquez Torres, S. et al. De novo design of high-affinity binders of bioactive helical peptides.
Nature 626, 435-442 (2024).

14.  Sappington, |. et al. Improved protein binder design using beta-pairing targeted RFdiffusion.
Preprint at bioRxiv https://doi.org/10.1101/2024.10.11.617496 (2024).

15. Cao, L. et al. Design of protein-binding proteins from the target structure alone. Nature
605, 551-560 (2022).

16. Gainza, P. et al. De novo design of protein interactions with learned surface fingerprints.
Nature 617, 176-184 (2023).

17.  Pacesa, M. et al. One-shot design of functional protein binders with BindCraft. Nature
646, 483-492 (2025).

18. Cutting, D., Dreyer, F. A., Errington, D., Schneider, C. & Deane, C. M. De novo antibody
design with SE(3) diffusion. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.07622
(2024).

19.  Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596,
583-589 (2021).

20. Yang, J. etal. Improved protein structure prediction using predicted interresidue orientations.
Proc. Natl Acad. Sci. USA 117, 1496-1503 (2020).

21.  Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377,
387-394 (2022).

22. Bennett, N. et al. Improving de novo protein binder design with deep learning. Nat. Commun.
14, 2625 (2023).


https://doi.org/10.1038/s41586-025-09721-5
https://doi.org/10.1101/2022.12.22.521698
https://doi.org/10.1101/2023.01.08.523187
https://doi.org/10.1101/2024.10.11.617496
https://doi.org/10.48550/arXiv.2405.07622

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Yin, R. & Pierce, B. G. Evaluation of AlphaFold antibody-antigen modeling with
implications for improving predictive accuracy. Protein Sci. 33, 4865 (2024).

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with
AlphaFold 3. Nature 630, 493-500 (2024).

Jin, B., Odongo, S., Radwanska, M. & Magez, S. Nanobodies: a review of generation,
diagnostics and therapeutics. Int. J. Mol. Sci. 24, 5994 (2023).

Mitchell, L. S. & Colwell, L. J. Analysis of nanobody paratopes reveals greater diversity
than classical antibodies. Protein Eng. Des. Sel. 31, 267-275 (2018).

Vincke, C. et al. General strategy to humanize a camelid single-domain antibody and
identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284, 3273-3284
(2009).

Hunt, A. C. et al. Multivalent designed proteins neutralize SARS-CoV-2 variants of concern
and confer protection against infection in mice. Sci. Transl. Med. 14, eabn1252 (2022).
Ragotte, R. J. et al. De novo design of potent inhibitors of clostridial family toxins. Proc.
Natl Acad. Sci. USA 122, €2509329122 (2025).

Rix, G. et al. Continuous evolution of user-defined genes at 1 million times the genomic
mutation rate. Science 386, eadm9073 (2024).

Ravikumar, A., Arzumanyan, G. A., Obadi, M. K. A., Javanpour, A. A. & Liu, C. C. Scalable,
continuous evolution of genes at mutation rates above genomic error thresholds. Cell
175, 1946-1957.e13 (2018).

Walls, A. C. et al. Unexpected receptor functional mimicry elucidates activation of
coronavirus fusion. Cell 176, 1026-1039.e15 (2019).

Yarmarkovich, M. et al. Targeting of intracellular oncoproteins with peptide-centric CARs.
Nature 623, 820-827 (2023).

Sun, Y. et al. Structural principles of peptide-centric chimeric antigen receptor
recoghnition guide therapeutic expansion. Sci. Immunol. 8, eadj5792 (2023).

Du, H. et al. Targeting peptide antigens using a multiallelic MHC I-binding system.

Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02505-8 (2024).

Sim, M. J. W. et al. High-affinity oligoclonal TCRs define effective adoptive T cell therapy
targeting mutant KRAS-G12D. Proc. Natl Acad. Sci. USA 117, 12826-12835 (2020).

Sun, Y. et al. Universal open MHC-I molecules for rapid peptide loading and enhanced
complex stability across HLA allotypes. Proc. Natl Acad. Sci. USA 120, e2304055120
(2023).

Hitawala, F. N. & Gray, J. J. What has AlphaFold3 learned about antibody and nanobody
docking, and what remains unsolved? Preprint at bioRxiv https://doi.org/10.1101/2024.
09.21.614257 (2024).

Wang, C. et al. Proteus: pioneering protein structure generation for enhanced designability
and efficiency. Preprint at bioRxiv https://doi.org/10.1101/2024.02.10.579791 (2024).

40. Yim, J. et al. Fast protein backbone generation with SE(3) flow matching. Preprint at arXiv
https://doi.org/10.48550/arXiv.2310.05297 (2023).

41. Bose, J. et al. SE(3)-stochastic flow matching for protein backbone generation. In Proc.
12th International Conference on Learning Representations (ICLR, 2024).

42. Geffner, T. et al. Proteina: scaling flow-based protein structure generative models. In Proc.
13th International Conference on Learning Representations (ICLR, 2025).

43. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold
All-Atom. Science https://doi.org/10.1126/science.ad(2528 (2024).

44. Gao, S.H., Huang, K., Tu, H. & Adler, A. S. Monoclonal antibody humanness score and its
applications. BMC Biotechnol. 13, 55 (2013).

45. Dreyer, F. A., Cutting, D., Schneider, C., Kenlay, H. & Deane, C. M. Inverse folding for antibody
sequence design using deep learning. Preprint at https://doi.org/10.48550/arXiv.2310.19513
(2023).

46. Prihoda, D. et al. BioPhi: a platform for antibody design, humanization, and humanness
evaluation based on natural antibody repertoires and deep learning. mAbs 14, 2020203
(2022).

47. Bio, N. & Biswas, S. De novo design of epitope-specific antibodies against soluble and
multipass membrane proteins with high specificity, developability, and function. Preprint
at bioRxiv https://doi.org/10.1101/2025.01.21.633066 (2025).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

@@@@ Open Access This article is licensed under a Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License, which permits any

non-commercial use, sharing, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted material derived from this
article or parts of it. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Nature | www.nature.com | 11


https://doi.org/10.1038/s41587-024-02505-8
https://doi.org/10.1101/2024.09.21.614257
https://doi.org/10.1101/2024.09.21.614257
https://doi.org/10.1101/2024.02.10.579791
https://doi.org/10.48550/arXiv.2310.05297
https://doi.org/10.1126/science.adl2528
https://doi.org/10.48550/arXiv.2310.19513
https://doi.org/10.1101/2025.01.21.633066
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Article

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Theantibody training dataset is available on Zenodo*® (https://zenodo.
org/records/15741710).Cryo-EMmapsand correspondingatomicmodels
are located in the Electron Microscopy Data Bank (EMD-49373 and
EMD-49405) and PDB (9NFU and 9NH7).

Code availability

The codes for running the RFdiffusion antibody design, ProteinMPNN
andfine-tuned RoseTTAFold have beenreleased as a single repository
on GitHub, free for academic, personal and commercial use (https://
github.com/RosettaCommons/RFantibody).

48. Watson, J. L. Antibody training dataset for “Atomically accurate de novo design of
antibodies with RFdiffusion” [data set]. Zenodo https://doi.org/10.5281/zenodo.15741710
(2025).

49. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25, 3389-3402 (1997).

50. Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42,
D1140-D1146 (2014).

51.  Jager, M., Gehrig, P. & Pliickthun, A. The scFv fragment of the antibody hu4D5-8:
evidence for early premature domain interaction in refolding. J. Mol. Biol. 305, 1111-1129
(2001).

52. Kawai, S., Hashimoto, W. & Murata, K. Transformation of Saccharomyces cerevisiae and
other fungi. Bioeng. Bugs 1, 395-403 (2010).

Acknowledgements We thank P. Bradley for use of the TCR distillation dataset; M. Baek and

F. DiMaio for training RoseTTAFold2; B. Coventry for the use of the de novo miniprotein binder
dataset; J. Gershon for early contributions to this project; J.-P. Julien and I. Kucharska (The
Hospital for Sick Children) for providing recombinant Frizzled-7 and CSPG4; N. Roullier for
help with next-generation sequencing; A. Dosey for providing the haemagglutinin target
protein; J. Dauparas, H. Kamisetty, A. Ebenezer, A. Motmaen and B. Lu for helpful discussions;
I. Haydon for help with graphics; Twist Biosciences for access to their 400-bp oligo synthesis,
which was invaluable for the high-throughput VHH experiments; and L. Stewart, L. Stuart,

K. VanWormer and L. Goldschmidt for supporting the running of the Institute for Protein Design.
This work was supported by gifts from Microsoft (to D.L.S. and D.B.), The Donald and Jo Anne
Petersen Endowment for Accelerating Advancements in Alzheimer’s Disease Research (to
N.R.B.), Amgen (to J.L.W.), grant DE-SC0018940 MODO3 from the US Department of Energy
Office of Science (to A.J.B. and D.B.), the National Institute of General Medical Sciences of the
US National Institutes of Health under award number T32GM008268 (to D.L.S.), the National

Eye Institute of the National Institutes of Health under award number T32EY032448 (to YY.),
grant 5U19AG065156-02 from the National Institute for Aging (to D.B.), grant ROICA260415
from the National Cancer Institute (to C.C.L.), grant R35GM136297 from the National Institute
of General Medical Sciences (to C.C.L.), the Institute for Rapid Antibody Engineering and
Evolution as part of the Engineering+Health Initiative of the UCI Samueli School of Engineering
(to C.C.L.), the Open Philanthropy Project Improving Protein Design Fund (to R.J.R. and D.B.),

a grant (INV-010680) from the Bill and Melinda Gates Foundation (to J.LW., CW., E.L.S., K.D.C.
and D.B.), an EMBO Postdoctoral Fellowship (grant number ALTF 292-2022; to J.L.W.), Howard
Hughes Medical Institute COVID-19 Initiative (to CW.), Defense Threat Reduction Agency grant
HDTRA1-21-1-0007 (to B.H.), a National Science Foundation Training Grant (EF-2021552; to
P.JY.L.), NERSC award BER-ERCAP0022018 (to P.JY.L.), a Grants for Resident Innovation and
Projects award from the Children’s Hospital of Philadelphia (to R.A.), as part of the NexTGen
team supported by the Cancer Grand Challenges partnership funded by Cancer Research

UK (CGCATF-2021/100002), the National Cancer Institute (CA278687-01) and The Mark
Foundation for Cancer Research (to J.M.M. and N.G.S.), a grant (U19 AG065156) from the
National Institute for Aging (to S\V.T.), a Washington Research Foundation Postdoctoral
Fellowship program (to R.J.R.), the Defense Threat Reduction Agency Grant HDTRA1-21-1-0038
(to I.G.), the Howard Hughes Medical Institute (to N.R.B., R.J.R. and D.B.), a grant from the
Institute for Basic Science IBS-R030-C1 (to H.M.K.), the Bill and Melinda Gates Foundation

for Adjuvant Research (to C.C.), the Audacious Project at the Institute for Protein Design

(to K.D.C. and D.B.) and an EMBO long-term fellowship (to B.I.M.W.). Figure 4 was created using
BioRender (http://biorender.com).

Author contributions N.R.B., J.L.W. and R.J.R. conceived the study, and may change the order
of their names for personal pursuits to best suit their own interests. N.R.B. and J.L.W. trained
RFdiffusion and fine-tuned RoseTTAFold2. R.J.R., D.L.S. and R.B. led the experimental work,
with help from E.L.S., PJY.L., B.H., 1.G., MG.S., DV, R.A,, SVT, S.M.S,, TT.S. and K.O. JM.M.,
N.G.S. and R.A.M. supervised the experimental work and provided reagents. A.J.B. led

the negative stain electron microscopy and cryo-EM structural characterization work, with
help from CW.and K.D.C. J.LW., N.R.B., D.L.S.,R.A., C.C. and H.M.K. made the designs. D.L.S.
and B.S. contributed additional code. D.L.S., R.B. and R.J.R. did the retrospective AlphaFold3
analysis. J.LW., R.J.R. and B.I.M.W. devised the library assembly strategy. S.C. and Y.S. purified
the target proteins. Y. performed the OrthoRep experiments under the guidance and
supervision of C.C.L. J.LW., RJ.R. and D.B. co-managed the project. J.LW., D.B., R.J.R., N.R.B.
and A.J.B. wrote the manuscript. All authors read and contributed to the manuscript.

Competing interests N.R.B., J.LW., RJ.R., A.J.B., CW., P.JY.L., B.H. and D.B. are co-inventors

on US provisional patent number 63/607,651, which covers the computational antibody
design pipeline described here. N.R.B., J.LW., P.JY.L. and B.H. are currently employed by Xaira
Therapeutics. N.R.B., J.LW., P.JY.L., B.H., RJ.R., A.J.B. and C.W. have received payments relating
to the licensing of the inventions described here to Xaira Therapeutics. C.C.L. is a co-founder
of K2 Therapeutics, which uses OrthoRep in antibody engineering and evolution. The other
authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-025-09721-5.

Correspondence and requests for materials should be addressed to Joseph L. Watson,
Robert J. Ragotte or David Baker.

Peer review information Nature thanks Haiyan Liu, Yufeng Liu, Carlos Outeiral, Amalio Telenti
and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://zenodo.org/records/15741710
https://zenodo.org/records/15741710
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-49373
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-49405
http://doi.org/10.2210/pdb9nfu/pdb
http://doi.org/10.2210/pdb9nh7/pdb
https://github.com/RosettaCommons/RFantibody
https://github.com/RosettaCommons/RFantibody
https://doi.org/10.5281/zenodo.15741710
http://biorender.com
https://doi.org/10.1038/s41586-025-09721-5
http://www.nature.com/reprints

	Atomically accurate de novo design of antibodies with RFdiffusion

	Training RFdiffusion for antibody design

	Fine-tuning RF2 for antibody validation

	Design and characterization of VHHs

	Cryo-EM of a VHH-binding influenza haemagglutinin

	Cryo-EM of VHHs to TcdB and SARS-CoV-2

	Design of scFvs with six designed CDRs

	Atomically accurate scFv design to TcdB

	Improved oracles increase success rate

	Discussion

	Online content

	Fig. 1 Overview of RFdiffusion for antibody design.
	Fig. 2 Biochemical characterization of designed VHHs.
	Fig. 3 Cryo-EM structural characterization of de novo-designed VHH binding to influenza haemagglutinin and TcdB.
	Fig. 4 Biochemical characterization of combinatorially assembled scFvs with six designed CDRs.
	Fig. 5 Cryo-EM structural characterization of two TcdB-binding scFvs.
	Extended Data Fig. 1 Designed VHH are dissimilar to the training dataset.
	Extended Data Fig. 2 Fine-tuned RoseTTAFold2 can distinguish true complexes from decoy complexes.
	Extended Data Fig. 3 Fine-tuned RoseTTAFold2 recapitulates design structures and computationally demonstrates specificity of VHHs for their targets.
	Extended Data Fig. 4 Analysis of SPR Competition Assays.
	Extended Data Fig. 5 Cryo-EM structure determination statistics for a de novo designed VHH bound to an influenza HA trimer.
	Extended Data Fig. 6 Final Local Refinement CryoEM statistics for OrthoRep Affinity Matured TcdB VHH, VHH_TcdB_H2_ortho in complex with TcdB.
	Extended Data Fig. 7 Computational validation of the structure-based combinatorial assembly strategy.
	Extended Data Fig. 8 Characterization of TcdB- and Phox2B-binding scFvs.
	Extended Data Fig. 9 CryoEM statistics for TcdB in complex with scFv6.
	﻿Extended Data Fig. 10 AlphaFold3 retrospectively predicts binders.


