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Computational design of metallohydrolases

Donghyo Kim1,2,10, Seth M. Woodbury1,2,3,10, Woody Ahern1,2,4,10, Doug Tischer1,2, Alex Kang1,2, 
Emily Joyce1,2, Asim K. Bera1,2, Nikita Hanikel1,2, Saman Salike1,2,5, Rohith Krishna1,2, Jason Yim6, 
Samuel J. Pellock1,2, Anna Lauko1,2,7, Indrek Kalvet1,2,8 ✉, Donald Hilvert9 ✉ & David Baker1,2,8 ✉

De novo enzyme design seeks to build proteins containing ideal active sites with 
catalytic residues surrounding and stabilizing the transition state(s) of the target 
chemical reaction1–7. The generative artificial intelligence method RFdiffusion8,9 
solves this problem, but requires specifying both the sequence position and 
backbone coordinates for each catalytic residue, limiting sampling. Here we 
introduce RFdiffusion2, which eliminates these requirements, and use it to design 
zinc metallohydrolases starting from quantum chemistry-derived active site 
geometries. From an initial set of 96 designs tested experimentally, the most active 
has a catalytic efficiency (kcat/KM) of 16,000 M−1 s−1, orders of magnitude higher than 
previously designed metallohydrolases6,7,10,11. A second round of 96 designs yielded  
3 additional highly active enzymes, with kcat/KM values of up to 53,000 M−1 s−1 and a 
catalytic rate constant (kcat) of up to 1.5 s−1. The design models of the four most active 
designs differ from known structures and from each other, and the crystal structure of 
the most active design is very close to the design model, demonstrating the accuracy 
of the design method. The most active enzymes are predicted by PLACER12 and Chai-1 
(ref. 13) to have preorganized active sites that effectively position the substrate for 
nucleophilic attack by a water molecule activated by the bound metal. The ability to 
generate highly active enzymes directly from the computer, without experimental 
optimization, should enable a new generation of potent designer catalysts14,15.

Metallohydrolases catalyse some of the most difficult hydrolysis reac-
tions in biology by using their bound metal ions to activate a water 
molecule positioned adjacent to the substrate bond to be cleaved16–18. 
Engineering new metallohydrolases is currently of considerable interest 
for degrading human-generated environmental pollutants, for which 
there has not been sufficient time for efficient hydrolytic enzymes to 
evolve19–21. Protein engineering has expanded the scope of substrates 
that can be hydrolysed by metallohydrolases, but this often requires 
initial promiscuous activity22,23. De novo enzyme design has been used 
to generate new metallohydrolases6,10,24, but these have had relatively 
low activity and efficiency, and have required extensive directed evo-
lution to match the activity and efficiency of native enzymes24. Given 
an ideal metallohydrolase active site, de novo enzyme design seeks 
to identify or generate a protein scaffold that positions the catalytic 
residues, metals, and substrates in optimal catalytic geometries with 
high accuracy25,26. RFdiffusion has been used successfully to scaffold 
active sites, but the search has been limited by the need to specify the 
sequence positions and conformations of the catalytic residues8,9,27.

We reasoned that a generative artificial intelligence design method 
that only required the specification of side-chain functional group posi-
tions around a reaction transition state, and was capable of sampling 
over all possible sequence positions and conformations of these resi-
dues, could more readily satisfy complex catalytic constraints14,15,28,29. 
We set out to develop such an approach, and used it to design new 

metallohydrolases starting from a quantum chemistry-generated active 
site description with a bound metal cofactor.

To enable sequence-position and side-chain rotamer-agnostic 
enzyme design, we developed a generative artificial intelligence 
flow-matching model called RFdiffusion230. RFdiffusion2 extends the 
capabilities of RFdiffusion to generate scaffolds that position a set of 
functional residues (a ‘motif’) in two key ways. First, it enables atomic 
substructure scaffolding: RFdiffusion can only scaffold backbone-level 
motifs (with the side-chain and backbone atom N-Cα-C=O positions 
specified), whereas RFdiffusion2 can scaffold arbitrary atom-level 
motifs (any subset of amino acid heavy atoms). This is important for 
enzyme design because it allows users to specify only the positions 
of the key functional groups that interact with the reaction transition 
state, rather than the full side-chain and backbone conformation. Sec-
ond, RFdiffusion2 enables sequence-position-agnostic scaffolding: 
RFdiffusion requires specification of the primary sequence positions of 
the motif residues, but RFdiffusion2 can scaffold motifs whose primary 
sequence positions are unknown. RFdiffusion2 replaces diffusion with 
flow matching31,32 and achieves sequence-position-agnostic atomic 
substructure scaffolding by providing randomly selected native atomic 
coordinates (but not their sequence positions) during training in addi-
tion to the partially noised, sequence-labelled atomic coordinates. 
With these improvements, RFdiffusion2 generates diverse proteins 
starting directly from catalytic configurations that consist of input 
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functional group positions and substrate coordinates. Allowing the 
model to resolve the a priori unknown degrees of freedom (that is, the 
primary sequence positions and side-chain rotamer conformations 
of the catalytic residues) is considerably more effective at generating 
self-consistent design solutions than randomly sampling those degrees 
of freedom before inference, because the space is far too large to enu-
merate, as was necessitated with RFdiffusion. A detailed description 
of RFdiffusion2 training and benchmarking results for a wide range of 
active site scaffolding problems is described elsewhere30.

As an initial test of RFdiffusion2, we chose to design a zinc metallohy-
drolase for the hydrolysis of a fluorogenic ester, 4-methylumbelliferyl 
phenylacetate (4MU-PA), as a target reaction (Fig. 1a). We began by 
using density functional theory (DFT) to identify the transition-state 
geometry of the rate-determining Zn(II)-OH nucleophilic attack on 
the substrate ester. Four distinct catalytic arrangements based on the 
stereochemistry of the tetrahedral intermediate and the nature of the 
oxyanion hole were considered (Fig. 1b, Supplementary Figs. 1 and 2, 

Supplementary Data 1 and Supplementary Methods 4.1). These calcu-
lations provide the coordinates of the three Zn(II)-binding imidazole 
rings, the metal, and the transition state. Our previous RFdiffusion 
approach required the backbone coordinates and residue positions as 
inputs, which would require upfront sampling of the rotameric states 
and sequence position for each histidine. This cannot be done exhaus-
tively: even with relatively coarse sampling around the side-chain chi 
angles χ1, χ2, and the backbone torsion angle ψ, there are on the order 
of 1018 possible choices for the side-chain conformations and sequence 
placements of our full catalytic site (Fig. 1c and Extended Data Fig. 1). 
Whereas each RFdiffusion run has to be initialized with a specific (and 
generally randomly selected) choice from this enormous set of com-
binations, RFdiffusion2 as described above searches the entire space 
in each trajectory.

RFdiffusion2 inference trajectories were used to build protein scaf-
folds housing the DFT-generated minimal active site configurations, 
referred to as theozymes2,33. Several snapshots from a representative 
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Fig. 1 | RFdiffusion2 design method. a, Hydrolysis of 4MU-PA yields 
phenylacetic acid and a fluorescent coumarin product. b, Example theozyme  
for Zn(II)-hydroxide nucleophilic attack on the 4MU-PA ester. Two-dimensional 
representation (left) and 3D DFT model (right). Arrows on the 3D model represent 
sampled conformational flexibility. c, Comparison of scaffold generation around 
an input theozyme using previous backbone centric RFdiffusion (top row) versus 
interaction functional group centric RFdiffusion2. RFdiffusion requires explicit 
upfront sampling of side-chain conformations and residue sequence positions, 
whereas RFdiffusion2 only requires the transition-state complex and the catalytic 
side-chain functional groups, implicitly sampling sequence space and rotameric 

space during inference. d, Snapshots of the global structure and active site 
from model XT during an RFdiffusion2 inference trajectory. The coordinates of 
the input transition-state complex and catalytic functional groups stay fixed 
during inference while the backbone structure, sequence positions, and 
unspecified atoms of the catalytic side chains are sampled by RFdiffusion2. 
The Cα atoms that host the catalytic histidines at the end of the trajectory  
are retrospectively highlighted as red spheres; these Cα atoms are not 
predetermined but rather move into the frame to host the fixed side chains as 
the global structure forms around the motifs.
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trajectory are shown in Fig. 1d, transforming random noise on the left 
into the final backbone on the right (Supplementary Video 1). The Cα 
atoms of each residue (shown as coloured spheres representing final 
sequence position) are initially sampled from a Gaussian distribution, 
and the target functional atom positions (shown in sticks) stay fixed. 
As the trajectory proceeds from left to right, the global structure takes 
shape around the motif, with the fixed histidine side chains eventually 
connecting to Cα atoms of the protein backbone at sequence positions 
of the network’s choosing. A total of 5,120 RFdiffusion2 inference tra-
jectories were carried out starting from different random seeds and 
for each of the resulting protein scaffolds, sequences were generated 
using ProteinMPNN34. The catalytic geometry and interactions with the 
transition state of those designs for which the AlphaFold235 predicted 
structure was close to the design model were further optimized using 
iterative LigandMPNN36 and constrained Rosetta repacking and minimi-
zation37 (Extended Data Fig. 2 and Supplementary Methods 4.1). Designs 
containing a proposed general base positioned to activate the water 
molecule (that is, Glu, Asp or His within hydrogen bonding distance of 
the Zn(II)-bound water) and side-chain hydrogen bonds stabilizing the 
transition-state oxyanion (if applicable), and that AlphaFold2 predicted 
to adopt the target structure, were characterized with PLACER12 to 
assess active site preorganization. A total of 96 designs were selected 
for experimental characterization on the basis of predicted active site 
geometry and preorganization (Supplementary Fig. 3, Supplementary 
Data 2 and 3 and Supplementary Methods 4.1).

Linear DNA fragments encoding the 96 designs were cloned into 
a plasmid encoding a C-terminal Strep-tag and used to transform 
Escherichia coli, and the resulting proteins were purified using Strep-tag 
affinity chromatography. Eighty-six out of ninety-six designs were 
expressed and soluble as judged by SDS–PAGE analysis of the eluants 
(Supplementary Fig. 4). Purified designs were supplemented with zinc 
sulfate, and hydrolysis of 4MU-PA was monitored by fluorescence. Five 
designs (A1, A8, B9, C4 and F7) had activity well above background 
(Fig. 2b and Supplementary Fig. 5). Sequence-verified single clones for 
each of these were expressed and purified by affinity chromatography 
followed by size-exclusion chromatography to obtain pure, monomeric 
protein fractions (Supplementary Figs. 6 and 7 and Supplementary 
Table 1). Michaelis–Menten kinetic characterization of the purified 
variants revealed a kcat/KM of 16,000 ± 2,000 M−1 s−1 for A1, the most 
active design, and kcat/KM values in the range of 35–140 M−1 s−1 for the 
other four designs (Fig. 2c,d, Extended Data Fig. 3 and Extended Data 
Table 1). For comparison, the kcat/KM of previously designed metallo-
hydrolases24 ranged from 3 to 60 M−1 s−1 (Supplementary Table 2). A1 is 
also a relatively robust enzyme, and retains activity for at least 1,000 
turnovers (Fig. 3e and Supplementary Fig. 8). A1 differs considerably 
from previously described proteins: the most similar structures identi-
fied through template modelling (TM) alignment with the Protein Data 
Bank (PDB) and AlphaFold Protein Structure Database (AFDB) have 
TM scores38 of 0.41 and 0.49, respectively, and do not have analogous 
arrangements of catalytic residues (Extended Data Fig. 4a,b). We refer 
to A1 as zinc metalloesterase 1 (ZETA_1) throughout the remainder of 
the text.

Design ZETA_1 not only has remarkably high activity but was also the 
top-ranked design in our in silico ranking. The structure in the absence 
of substrate was predicted to be very close to the design model by Alpha-
Fold2 (Extended Data Fig. 5a and Supplementary Figs. 9 and 10), and the 
designed active site of ZETA_1 was predicted to be highly preorganized 
by PLACER, with the catalytic side chains fixed in place and the substrate 
held closely in its designed position, adjacent to the proposed Zn(II) 
site. PLACER12 is a deep neural network that, given a protein backbone 
containing a substrate, fully randomizes the positions of the substrate 
and all side chains within a 600-atom sphere, and then generates new 
coordinates for these groups12; repeated PLACER trajectories generate 
an ensemble of possible side-chain conformations and small molecule 
docks. Design ZETA_1 stood out from the other designs in both the extent 

of catalytic site preorganization (the catalytic side chains were largely 
fixed in space in catalytically competent conformations) and the posi-
tioning of the substrate–transition state in the active site (in the ZETA_1 
ensemble, the substrate remained largely fixed in space in the active 
site, whereas in the inactive designs H7 and H8, it fluctuated consider-
ably) (Fig. 2e–h and Supplementary Videos 2–5). Seven designs based 
on the same ZETA_1 backbone family were initially filtered out during 
the design selection phase, as they had suboptimal PLACER metrics; 
we retrospectively expressed and purified these designs and found 
that they had very low or no activity, further highlighting the utility of 
PLACER ensemble calculations for identifying active designs (Supple-
mentary Fig. 11). These findings suggest that combining global structure 
prediction with detailed PLACER modelling of the active site provides a 
powerful approach to assessing the catalytic machinery and substrate 
binding geometry for design selection (Supplementary Fig. 10).

The ZETA_1 active site consists of a primarily hydrophobic pocket 
with three histidines binding Zn(II) with their Nε atoms, an aspartate 
as a potential general base, and an asparagine that forms a hydro-
gen bond to the coumarin ring (Fig. 3a). As in the original theozyme 
model used to generate ZETA_1, the Zn(II) ion also acts as an oxy-
anion hole, stabilizing the developing negative charge at the tran-
sition state; there are no nearby side-chain hydrogen bond donors 
(Extended Data Fig. 5). Zinc is absolutely critical for ZETA_1 activity: 
extraction of bound Zn(II) by dialysis in the presence of the chelator 
1,10-phenanthroline completely eliminated activity, and activity was 
subsequently restored by addition of zinc to the solution (Fig. 3f). 
Zinc titration experiments measured a dissociation constant (KD) 
for Zn(II) of 41 ± 5 nM, which is similar to those of previous designed 
zinc enzymes26,39, but higher than native zinc hydrolases18,40–42, which 
typically have KD values less than 10 nM.

We carried out mutagenesis experiments to probe the contribu-
tions of the designed catalytic residues to Zn(II)-binding and catalysis 
(Fig. 3g–i and Supplementary Figs. 12–14). In the design model, N17 posi-
tions the substrate by hydrogen bonding with the lactone carbonyl of 
the coumarin moiety and could stabilize the developing negative charge 
on the leaving group; the N17A mutation led to a 8.1-fold decrease in 
kcat/KM (Supplementary Fig. 13). Mutation of all three metal-coordinating 
histidine residues to alanine simultaneously (H118A/H130A/H134A), as 
well as two of the three single histidine-to-alanine substitutions (H118A/
H134A), completely inactivated the enzyme, as expected. Mutating 
the third Zn(II)-coordinating residue to alanine (H130A) resulted in 
a decrease of only 13-fold in kcat/KM, and mutation of the proposed 
general base D67 to alanine had little effect on kcat/KM and increased 
Zn(II)-binding affinity. These results suggest that H134/H118/H130 
and H134/H118/D67 may be competing Zn(II)-binding sites owing to 
the close proximity of the coordinating side chains of H130 and D67, 
which was corroborated by Chai-1 (ref. 13) predictions of the protein–
Zn(II)–substrate complex (Extended Data Fig. 5b,c); the D67A mutation 
may confine the zinc to the originally designed coordination sphere 
with the three histidines, which is more catalytically competent. In the 
H130A mutant, D67 is likely to coordinate Zn(II) and maintain binding, 
albeit in a less optimal binding geometry, lowering the zinc affinity 
and enzyme activity.

Guided by these observations, we started from new DFT theozymes 
explicitly containing the catalytic base, and generated protein struc-
tures scaffolding these theozymes using a newer version of RFdiffu-
sion2 trained from random weight initialization on a threefold-larger 
dataset (previous versions were fine-tuned from structure prediction 
weights) (Fig. 4a, Supplementary Data 1 and Supplementary Meth-
ods 4.2). Designs whose Chai-1 predictions of the protein–Zn(II)– 
substrate phosphonate ester complex, mimicking the reaction transi-
tion state, closely matched the design models with high confidence 
were identified by PLACER to have highly preorganized active sites 
(Supplementary Figs. 15 and 16). Ninety-six such designs spanning 37 
RFdiffusion2-generated backbones were selected for experimental 
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characterization (Supplementary Fig. 17 and Supplementary Data 
2 and 3). Eighty-five of the 96 designs were expressed and soluble 
(Supplementary Fig. 18), and 11 designs spanning 3 different folds 
had substantial zinc-dependent 4MU-PA hydrolysis activity (Fig. 4b,c 
and Supplementary Fig. 19). Michaelis–Menten analysis revealed 
that 5 designs had a kcat/KM greater than 104 M−1 s−1 and 6 designs  
had a kcat/KM greater than 103 M−1 s−1 (Fig. 4d, Extended Data Fig. 6 and 
Extended Data Table 1). The most active designs for each backbone 
had a kcat/KM = 53,000 ± 5,000 M−1 s−1 (ZETA_2), kcat/KM = 19,000 ±  
2,000 M−1 s−1 (ZETA_3), and kcat/KM = 1,100 ± 200 M−1 s−1 (ZETA_4) (Fig. 4f–h  
and Supplementary Fig. 20). ZETA_2 has a kcat = 1.5 ± 0.1 s−1, a threefold 
increase over the kcat of ZETA_1, and close to that of the metallohydrolase 
MID1sc10 obtained after 10 rounds of directed evolution24. RFdiffu-
sion2 enables specification of the position of the substrate relative 
to the centre of mass of the designed protein; for ZETA_2 and ZETA_3, 

the protein was centred near the phenylacetate and 4-methylumbel-
liferyl moieties, respectively, of 4MU-PA, resulting in opposite substrate 
binding modes in the design models (that is, the 4-methylumbellif-
eryl is exposed in ZETA_2 and the phenylacetate is exposed in ZETA_3) 
(Extended Data Fig. 7).

The success rate in the second design campaign was considerably 
higher than the first campaign (11 out of 96 versus 1 out of 96 designs 
with kcat/KM greater than 103 M−1 s−1), supporting the conclusions from the 
first round analysis (Supplementary Figs. 21–26, Supplementary Table 3, 
Supplementary Discussion 2 and Supplementary Methods 4.2). Circular 
dichroism experiments confirmed that all active enzyme scaffolds 
from both design campaigns possess secondary structures consist-
ent with their design models, indicating proper folding (Supplemen-
tary Fig. 21). The structures of ZETA_1-4 are rather different from each 
other and previously known metallohydrolases (Extended Data Fig. 4).  
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The sequence positions of the catalytic residues in each of these enzy
mes are also very different, highlighting the diversity of RFdiffusion2  
generated design solutions (Fig. 4c and Supplementary Tables 4 and 5).

We determined the structure of ZETA_2, the most active design, in 
the apo state at 3.5 Å using X-ray crystallography (PDB: 9PYJ; Fig. 5). The 
experimental structure is in good agreement with the design model, 
with nearly superimposable backbones (Cα root mean squared devia-
tion (r.m.s.d.) = 1.1 Å) and the catalytic residues preorganized in the 
designed geometry (Fig. 5a,b). The binding pocket is complementary 
to the superimposed transition state from the design model (Fig. 5c). 
We also solved a 2.1 Å structure after soaking ZETA_2 in Zn(II) (PDB: 
9PYL; Extended Data Fig. 8); whereas the backbone was again nearly 

superimposable with the design model (Cα r.m.s.d. = 0.8 Å) and a 
Zn(II) ion was present with 100% occupancy at the designed location 
(r.m.s.d. = 1.7 Å), one of the Zn(II)-coordinating histidines (H110) was 
flipped out to interact with a Zn(II) ion bound at the surface of the pro-
tein, probably because of the high Zn(II) concentration in the crystal 
soaking buffer (250 mM) (Extended Data Fig. 8).

Conclusion
Here we demonstrate that RFdiffusion2 can generate highly active 
metallohydrolases directly from active site configurations obtained by 
quantum chemistry calculations. The zero-shot design of an enzyme 

N17

H134

H118

0
0 40 80 120

0

500

1,000

1,500

2,000

20 40 60

H130

D67

a b

d

e f

~ ~

Zn(II) addition

Time (min)
Time (min)

All substrate consumed

Fl
uo

re
sc

en
ce

 u
ni

ts

WT Zn(II)-free Blank

ZETA_1

1,200

800

400

0

100

200

8 12 16 20

0

Tu
rn

ov
er

 n
um

b
er

0

0

500

1,000

1,500

20 40 60

hg i

Time (min)

Fl
uo

re
sc

en
ce

 u
ni

ts

D67A

N17A

H130A

H118A
H134A
H118A/H130A/H134A
Blank

WT0 100 200 300 400

WT

H118A/H130A/H134A

H130A

H134A

H118A

N17A

D67A
W

T

H13
0A

N17
A

D67
A

41 ± 5 nM

330 ± 30 nM

58 ± 6 nM

105 ± 11 nM

55 ± 6 nM

36 ± 4 nM

27 ± 3 nM

Zn(II) KD (nM)

Retention volume (ml)

A
28

0

0

10,000

5,000

15,000

20,000

k c
at

/K
M

 (M
–1

 s
–1

)

c

M
R

E
(d

eg
 c

m
2  d

m
ol

–1
)

5030 70 90

×104

Temperature (°C)

–2

–1

M
R

E
22

2 
nm

(d
eg

 c
m

2  d
m

ol
–1

)

–1

220200 240

×104

Wavelength (nm)

–2

0

25 °C
35 °C

45 °C
55 °C

65 °C
75 °C

85 °C 95 →
25 °C95 °C

Fig. 3 | Characterization of ZETA_1 activity. a, ZETA_1 design model (left) with 
close-up view of the active site showing the catalytic residues (middle) and a 
surface view of the designed pocket revealing high shape-complementarity  
to the substrate (right). b, Size-exclusion chromatogram of ZETA_1 showing a 
single peak corresponding to monomeric protein. c, Circular dichroism spectra 
of ZETA_1 recorded every 10 °C from 25 °C to 95 °C (viridis colour gradient), and 
after recooling to 25 °C (grey). The spectra suggest that ZETA_1 has an α-helical 
secondary structure and that it can refold after heating and partial unfolding. 
MRE, mean residue ellipticity. d, Circular dichroism signal at 222 nm measured 
every 1 °C and plotted as a function of temperature. e, [Product]:[enzyme] 
progress curve shows that ZETA_1 hydrolyses more than 1,000 4MU-PA molecules 
per enzyme. Note that the background reaction has been subtracted from the 

spectra so that every turnover can be attributed to the enzyme (Supplementary 
Fig. 8; further details in Supplementary Information, section 4.3). f, Reaction 
progress curves for the Zn(II) holo- and zinc-free apo ZETA_1 proteins showing 
zinc-dependent activity. Adding excess Zn(II) to the apo ZETA_1 sample after 
30 min re-establishes the activity, demonstrating that zinc is essential for the 
catalytic mechanism of ZETA_1. WT, wild type. g, Zinc affinity of wild-type and 
mutant ZETA_1, measured as the dissociation constant (KD), where a lower value 
indicates tighter binding. h, Fluorescence progress curves comparing the 
activity of wild-type and mutant ZETA_1. i, kcat/KM for active ZETA_1 mutants 
compared with the wild type. Data represent the mean ± s.d. of three independent 
measurements of turnover number (e), fluorescence progress curves (f,h), 
Zn(II)-binding dissociation constant (g) and Michaelis–Menten parameters (i).

https://doi.org/10.2210/pdb9PYJ/pdb
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(ZETA_1) with a kcat/KM greater than 104 M−1 s−1—the top-ranked in silico 
design out of a total of 96 tested straight from the computer, with no 
experimental optimization—is a considerable advance for de novo 

enzyme design, which has previously required extensive design screen-
ing and directed evolution to achieve activities at this level14,24. The 
robustness of our design strategy is demonstrated by the zero-shot 
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design of 3 additional enzymes from a new set of 96 designs tested 
straight from the computer: ZETA_2 and ZETA_3, with a kcat/KM of 
more than 104 M−1 s−1, and ZETA_4, with a kcat/KM greater than 103 M−1 s−1.  
ZETA_1–4 have structures that are very different from each other 
and from previously known structures. The catalytic efficiencies of 
ZETA_1–3 are within the range typically observed for native metallohy-
drolases with similar substrates (kcat/KM = 104 ~ 106 M−1 s−1) and greater 
than for all previously designed metallohydrolases prior to optimi-
zation43–47 (Supplementary Table 2). Experimental characterization 
of ZETA_1 and ZETA_2 provide strong evidence that they function as 
designed, utilizing a bound Zn(II) ion to activate a water molecule for 
nucleophilic attack and to stabilize the resulting oxyanion intermediate 
and flanking transition states. The results from PLACER and the Chai-1 
ensembles suggest that the key to obtaining kcat/KM of over 104 M−1 s−1 
is precise substrate placement relative to the activated water and the 
Zn(II) ion. Future metallohydrolase design efforts that: (1) position 
the general base such that it cannot reconfigure to interact with the 
bound metal ion (as in the case of ZETA_1); (2) better preorganize the 
metal-binding residues; and (3) incorporate further side-chain oxy-
anion stabilization, could increase activity to levels comparable to the 
most active native metallohydrolases.

Our RFdiffusion2–PLACER design approach has many advantages 
over previous de novo enzyme design methods and should be broadly 
applicable for generating efficient catalysts for a wide diversity 
of chemical reactions. By enabling direct scaffolding of side-chain 
functional groups, rather than backbone N-Cα-C=O coordinates as 
required in enzyme design calculations with RFdiffusion1,27, RFdiffu-
sion2 bypasses the need for explicit enumeration of catalytic side-chain 
rotamer conformations and placement of the catalytic residues along 
the linear sequence—this enables each design trajectory to sample 
from the enormous space of possibilities rather than being confined 
to a small subspace. Assessment of active site preorganization and 

substrate–transition state positioning with PLACER and Chai-1 proved 
remarkably effective at identifying the most active designs; this result, 
together with similar observations with de novo designed serine hydro-
lases1 and retroaldolases12, suggests that PLACER and related deep 
learning approaches will be widely useful for design ranking. In our 
laboratory, we have found the RFdiffusion2–PLACER design approach 
described here to yield biocatalysts for a variety of bond-breaking and 
bond-making chemical reactions, and we look forward to seeing what 
the broader design community can generate with these tools, which 
we are making freely available.
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Data availability
All data are available in the main text or as supplementary materials, 
including the DFT coordinates of the theozymes from each design 
campaign (Supplementary Data 1), the ordered protein sequences 
from each design campaign (Supplementary Data 2) and the design 
models of the ordered sequences from each design campaign (Sup-
plementary Data 3). For gel source data, see Supplementary Fig. 27. 
Protein crystal structure coordinates and structure factors are avail-
able in the Protein Data Bank with PDB IDs 9PYJ (apo ZETA_2) and 9PYL 
(Zn(II)-bound ZETA_2).

Code availability
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RosettaCommons/RFdiffusion2. PLACER is publicly available on GitHub 
at https://github.com/baker-laboratory/PLACER. Other design scripts 
and JupyterHub notebooks of the design pipelines used to design met-
allohydrolases are publicly available on GitHub at https://github.com/
baker-laboratory/Metallohydrolase_Enzyme_Design.
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Extended Data Fig. 1 | Catalytic constraints and enumerative catalytic motif 
scaffolding around theozymes for RFdiffusion2 compared to RFdiffusion.  
a, Example theozyme from DFT with relevant ligand atoms labeled and Rosetta 
constraint file labeling for the histidine side chains. Catalytic constraint files 
specifying the coordination geometry of the histidines were created at this 
step for each of the 4 theozymes from DFT. Note that Nhis is a general Rosetta 
label that accommodates epsilon and delta coordination geometries with  
zinc. b, Theozyme sampling enumeration pipeline with diverging paths for 

RFdiffusion2 and RFdiffusion. c, Side chain enumeration sampling different 
combinations of zinc coordination and imidazole orientations. Note that there 
are only 64 permutations of coordination and Cβ positioning. d, Backbone 
enumeration for RFdiffusion. This is required in addition to the sampling in (c). 
e, Calculation of the total number of possible RFdiffusion2 and RFdiffusion 
inputs. It should be noted that not all combinations of rotamers and sequence 
positions will be viable, somewhat reducing the total number, but to nowhere 
near the tiny enumeration space needed for RFdiffusion2.



Extended Data Fig. 2 | Computational design pipeline for metallohydrolases. a-f, Visual illustrations of the key steps in the computational design pipeline, 
with examples showing A1 (ZETA_1) at each stage in the pipeline.
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Extended Data Fig. 3 | Michaelis-Menten kinetic characterization of the 
five design hits from the first design campaign. Michaelis-Menten plots 
from these data are shown on the left. The progress curves for the measured 

initial velocities are shown in the middle. Designed active sites with the histidines 
and general base are displayed on the right.



Extended Data Fig. 4 | Structural novelty of the ZETA_1-4 designs. Global Cα 
alignment of the ZETA_1-4 design models with their most similar structures in 
the Protein Data Bank and AlphaFold2 Database based on TM-score, respectively. 
a,b, ZETA_1 aligned with (a) PDB structure 8GYM and (b) AF2 prediction 
A0A176QCW7. c,d, ZETA_2 aligned with (c) PDB structure 2V6Y and (d) AF2 
prediction A0A558CL52. e,f, ZETA_3 aligned with (e) PDB structure 5FUC and 

(f) AF2 prediction A0A1B7XEX0. g,h, ZETA_4 aligned with (g) PDB structure 
6Y06 and (h) AF2 prediction A0A353XWA2. In all cases, the designed proteins 
are shown in a colour gradient, and the PDB/AF2 structures are shown in grey. 
The poor alignment, low sequence identity, and modest TM-scores highlight 
the novelty of these de novo scaffolds.
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Extended Data Fig. 5 | Predicted structures of the A1 (ZETA_1) design.  
a, Active site of the A1 design model with pocket residues labeled. Designed 
structure is coloured and AlphaFold2 apo-predicted structure is grey.  
The structures are in high agreement, suggesting that A1 has a high degree  
of preorganization. b, Global and active site comparison of the A1 design 
(colored) with model 0 of the Chai-128 structure sequence/scaffold) with Zn(II) 
and 4MU-PA. The substrate SMILES file was provided to Chai-1, not the 
tetrahedral intermediate, whereas the A1 design model contains the transition 
state of the nucleophilic attack of hydroxide to the substrate. The global scaffold 
fold prediction by Chai-1 is nearly identical to the design model scaffold (r.m.s.d. 
Cα = 0.413). Additionally, the zinc and substrate docking positions by Chai-1 are 
nearly identical to the design model; model 0 of Chai-1 also predicts the zinc 
being coordinated by the 3 histidines (H118, H130, H134) in nearly the same 

orientations as the design model. c, Global and active site comparison of the A1 
design model (coloured) with model 1 of the Chai-1 structural prediction (grey) 
in the presence of zinc and 4MU-PA. Note this is shown from the side/back view. 
Again, the global scaffold fold prediction and substrate docking position by 
Chai-1 are nearly identical to the design model. Interestingly, Chai-1 predicts  
a slightly different zinc docking position in model 1 with H130 flipped away 
from the active site, and D67 is instead coordinating zinc with the other two 
histidines (H118 and H134). This supports the hypothesis that H130 and D67 are 
competitively binding zinc, explaining the results observed from the mutant 
activity and zinc binding experiments. Thus, it is unlikely that D67 is functioning 
efficiently, if at all, as a general base, providing a rational starting point for 
potential redesign.



Extended Data Fig. 6 | Michaelis-Menten kinetics of eleven major hits from the second design campaign. a-c, Kinetics of designs grouped by (a) ZETA_2 scaffold, 
(b) ZETA_3 scaffold, and (c) ZETA_4 scaffold.
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Extended Data Fig. 7 | Opposite substrate binding modes in ZETA_2 and 
ZETA_3 design models result from ORI placement. The ORI token is an 
optional coordinate fed to the updated RFdiffusion2, which instructs the model 
on where it should aim to generate the protein center of mass (Supplementary 
Methods 4.2). Thus, the ORI token can be used to specify which parts of the 
substrate/theozyme should be more surrounded by protein (buried) on average. 
ZETA_2 (right) and ZETA_3 (left) are designed to bind the substrate in opposite 

orientations; this arose from the opposite placement of ORI tokens with respect 
to the substrate. The bottom panels show a cross-section of the design models 
for these enzymes with the surface view to observe the designed substrate 
binding pocket. In ZETA_3 (left) the PA is solvent-exposed and the 4MU is  
buried because the ORI token is next to the 4MU. In ZETA_2 (right) the 4MU is 
solvent-exposed and the PA is buried because the ORI token is next to the PA.



Extended Data Fig. 8 | Crystal structure of Zn(II)-bound ZETA_2 after 
soaking. a, Cα superposition of the design model and the X-ray crystal structure 
of ZETA_2 (PDB: 9PYL) in the Zn(II)-bound state from crystal soaking, resolved at 
2.1 Å resolution. Catalytic residues shown as sticks and Zn(II) ions shown as 
green spheres. The structures are in close agreement (Cα r.m.s.d. = 0.8 Å) and 
the Zn(II) ion is present with 100% occupancy in the correct binding location 
(r.m.s.d. = 1.7 Å). b, Active site close-up view with the 2mFobs-DFcalc electron-
density map (blue mesh) contoured at 1.0 σ for the catalytic residues, Zn(II) ion, 
and water molecules. Surprisingly, one of the catalytic histidines (H110) is 
flipped out in the experimental structure to interact with a Zn(II) ion in solution, 
likely because of the high Zn(II) concentration used in the crystal-soaking 
buffer. We hypothesize that this may be an intermediate conformational state 

relevant to Zn(II)-binding that was captured and stabilized in the crystal. 
Additionally, the catalytic base (E34) adopts a different conformation from the 
catalytic conformation in this crystal structure; however, conformational 
flexibility for this residue was also observed in the apo-ZETA_2 crystal structure, 
with one of the conformations being the catalytic conformation (Fig. 5b). These 
conformations for E34 and H110 could be artifacts from the crystallization and 
soaking process or may suggest that ZETA_2 has dynamic properties. If it is 
dynamic, this poses an interesting question of whether the dynamics accelerate 
or hinder the activity of ZETA_2. Future work could try to buttress these 
residues with redesign or new de novo scaffolds to investigate if this would 
increase or decrease activity. Crystal structure shown in grey and design model 
shown in colour in all panels.

https://doi.org/10.2210/pdb9PYL/pdb
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Extended Data Table 1 | Michaelis-Menten parameters for the hydrolysis of 4MU-PA by the designed de novo 
metallohydrolases and mutants



Extended Data Table 2 | Crystallography data collection and refinement statistics

*Single xtal used for each data/structure. *Values in parentheses are for highest-resolution shell.
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