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De novo enzyme design seeks to build proteins containing ideal active sites with
catalytic residues surrounding and stabilizing the transition state(s) of the target
chemical reaction'”. The generative artificial intelligence method RFdiffusion®’
solves this problem, but requires specifying both the sequence position and
backbone coordinates for each catalytic residue, limiting sampling. Here we
introduce RFdiffusion2, which eliminates these requirements, and use it to design
zinc metallohydrolases starting from quantum chemistry-derived active site
geometries. From aninitial set of 96 designs tested experimentally, the most active
has a catalytic efficiency (k.,.,/Ky) 0f 16,000 M s, orders of magnitude higher than
previously designed metallohydrolases®”'*!, A second round of 96 designs yielded

3 additional highly active enzymes, with k_,./K\, values of up to 53,000 M*s?and a
catalytic rate constant (k.,,) of up to 1.5 s™. The design models of the four most active
designs differ from known structures and from each other, and the crystal structure of
the most active designis very close to the design model, demonstrating the accuracy
of the design method. The most active enzymes are predicted by PLACER? and Chai-1
(ref.13) to have preorganized active sites that effectively position the substrate for
nucleophilic attack by a water molecule activated by the bound metal. The ability to
generate highly active enzymes directly from the computer, without experimental

optimization, should enable a new generation of potent designer catalysts'".

Metallohydrolases catalyse some of the most difficult hydrolysis reac-
tions in biology by using their bound metal ions to activate a water
molecule positioned adjacent to the substrate bond to be cleaved™ 8,
Engineering new metallohydrolasesis currently of considerableinterest
for degrading human-generated environmental pollutants, for which
there has not been sufficient time for efficient hydrolytic enzymes to
evolve® 2, Protein engineering has expanded the scope of substrates
that can be hydrolysed by metallohydrolases, but this often requires
initial promiscuous activity?>?, De novo enzyme design has been used
to generate new metallohydrolases®®?, but these have had relatively
low activity and efficiency, and have required extensive directed evo-
lution to match the activity and efficiency of native enzymes®. Given
an ideal metallohydrolase active site, de novo enzyme design seeks
to identify or generate a protein scaffold that positions the catalytic
residues, metals, and substrates in optimal catalytic geometries with
high accuracy®?*. RFdiffusion has been used successfully to scaffold
activesites, but the search has been limited by the need to specify the
sequence positions and conformations of the catalytic residues®*?.
Wereasoned that agenerative artificial intelligence design method
thatonly required the specification of side-chain functional group posi-
tions around a reaction transition state, and was capable of sampling
over all possible sequence positions and conformations of these resi-
dues, could more readily satisfy complex catalytic constraints™*525%,
We set out to develop such an approach, and used it to design new

metallohydrolases starting from a quantum chemistry-generated active
site description with abound metal cofactor.

To enable sequence-position and side-chain rotamer-agnostic
enzyme design, we developed a generative artificial intelligence
flow-matching model called RFdiffusion2*. RFdiffusion2 extends the
capabilities of RFdiffusion to generate scaffolds that position a set of
functional residues (a ‘motif”) in two key ways. First, it enables atomic
substructure scaffolding: RFdiffusion can only scaffold backbone-level
motifs (with the side-chain and backbone atom N-Ca-C=0 positions
specified), whereas RFdiffusion2 can scaffold arbitrary atom-level
motifs (any subset of amino acid heavy atoms). This is important for
enzyme design because it allows users to specify only the positions
ofthe key functional groups thatinteract with the reaction transition
state, rather than the full side-chain and backbone conformation. Sec-
ond, RFdiffusion2 enables sequence-position-agnostic scaffolding:
RFdiffusionrequires specification of the primary sequence positions of
the motifresidues, but RFdiffusion2 can scaffold motifs whose primary
sequence positions are unknown. RFdiffusion2 replaces diffusion with
flow matching®*? and achieves sequence-position-agnostic atomic
substructure scaffolding by providing randomly selected native atomic
coordinates (but not their sequence positions) during trainingin addi-
tion to the partially noised, sequence-labelled atomic coordinates.
With these improvements, RFdiffusion2 generates diverse proteins
starting directly from catalytic configurations that consist of input
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Fig.1|RFdiffusion2 design method. a, Hydrolysis of 4MU-PA yields
phenylaceticacid and afluorescent coumarin product. b, Example theozyme

for Zn(l1)-hydroxide nucleophilic attack on the 4MU-PA ester. Two-dimensional
representation (left) and 3D DFT model (right). Arrows on the 3D model represent
sampled conformational flexibility. c, Comparison of scaffold generation around
aninputtheozyme using previous backbone centric RFdiffusion (top row) versus
interaction functionalgroup centric RFdiffusion2. RFdiffusion requires explicit
upfront sampling of side-chain conformations and residue sequence positions,
whereas RFdiffusion2 only requires the transition-state complex and the catalytic
side-chain functional groups, implicitly sampling sequence space and rotameric

functional group positions and substrate coordinates. Allowing the
modeltoresolve theaprioriunknown degrees of freedom (that is, the
primary sequence positions and side-chain rotamer conformations
of the catalytic residues) is considerably more effective at generating
self-consistent design solutions than randomly sampling those degrees
of freedombefore inference, because the spaceis far toolarge to enu-
merate, as was necessitated with RFdiffusion. A detailed description
of RFdiffusion2 training and benchmarking results for awide range of
active site scaffolding problems is described elsewhere®.
Asaninitial test of RFdiffusion2, we chose to design a zinc metallohy-
drolase for the hydrolysis of a fluorogenic ester, 4-methylumbelliferyl
phenylacetate (4MU-PA), as a target reaction (Fig. 1a). We began by
using density functional theory (DFT) to identify the transition-state
geometry of the rate-determining Zn(lIl)-OH nucleophilic attack on
the substrate ester. Four distinct catalytic arrangements based on the
stereochemistry of the tetrahedral intermediate and the nature of the
oxyanion hole were considered (Fig. 1b, Supplementary Figs.1and 2,
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spaceduringinference.d, Snapshots of the global structure and active site
from model X; during an RFdiffusion2inference trajectory. The coordinates of
theinputtransition-state complex and catalytic functional groups stay fixed
duringinference while the backbone structure, sequence positions, and
unspecified atoms of the catalytic side chains are sampled by RFdiffusion2.
The Caatoms that host the catalytic histidines at the end of the trajectory
areretrospectively highlighted asred spheres; these Cax atoms are not
predetermined but rather move into the frame to host the fixed side chains as
theglobal structure forms around the motifs.

Supplementary Dataland Supplementary Methods 4.1). These calcu-
lations provide the coordinates of the three Zn(ll)-binding imidazole
rings, the metal, and the transition state. Our previous RFdiffusion
approachrequired thebackbone coordinates and residue positions as
inputs, which would require upfront sampling of the rotameric states
andsequence position for each histidine. This cannot be done exhaus-
tively: even with relatively coarse sampling around the side-chain chi
angles x;, x,, and the backbone torsion angle ¢, there are on the order
of 10" possible choices for the side-chain conformations and sequence
placements of our full catalytic site (Fig. 1c and Extended Data Fig. 1).
Whereas each RFdiffusion run has to beinitialized with aspecific (and
generally randomly selected) choice from this enormous set of com-
binations, RFdiffusion2 as described above searches the entire space
ineach trajectory.

RFdiffusion2inference trajectories were used to build protein scaf-
folds housing the DFT-generated minimal active site configurations,
referred to as theozymes>*®, Several snapshots from a representative



trajectory are shownin Fig. 1d, transforming random noise on the left
into the final backbone on the right (Supplementary Video 1). The Ca
atoms of each residue (shown as coloured spheres representing final
sequence position) areinitially sampled from a Gaussian distribution,
and the target functional atom positions (shown in sticks) stay fixed.
Asthetrajectory proceeds from left toright, the global structure takes
shape around the motif, with the fixed histidine side chains eventually
connectingto Caatoms of the protein backbone at sequence positions
of the network’s choosing. A total of 5,120 RFdiffusion2 inference tra-
jectories were carried out starting from different random seeds and
for each of the resulting protein scaffolds, sequences were generated
using ProteinMPNN>*, The catalyticgeometry and interactions with the
transition state of those designs for which the AlphaFold2* predicted
structure was close to the design model were further optimized using
iterative LigandMPNN* and constrained Rosetta repacking and minimi-
zation® (Extended Data Fig. 2 and Supplementary Methods 4.1). Designs
containing a proposed general base positioned to activate the water
molecule (thatis, Glu, Asp or His within hydrogen bonding distance of
the Zn(Il)-bound water) and side-chain hydrogen bonds stabilizing the
transition-state oxyanion (if applicable), and that AlphaFold2 predicted
to adopt the target structure, were characterized with PLACER? to
assess active site preorganization. A total of 96 designs were selected
for experimental characterization on the basis of predicted active site
geometry and preorganization (Supplementary Fig. 3, Supplementary
Data2 and 3 and Supplementary Methods 4.1).

Linear DNA fragments encoding the 96 designs were cloned into
a plasmid encoding a C-terminal Strep-tag and used to transform
Escherichiacoli,and theresulting proteins were purified using Strep-tag
affinity chromatography. Eighty-six out of ninety-six designs were
expressed and soluble as judged by SDS-PAGE analysis of the eluants
(Supplementary Fig. 4). Purified designs were supplemented with zinc
sulfate, and hydrolysis of 4MU-PA was monitored by fluorescence. Five
designs (A1, A8, B9, C4 and F7) had activity well above background
(Fig.2band Supplementary Fig. 5). Sequence-verified single clones for
each of these were expressed and purified by affinity chromatography
followed by size-exclusion chromatography to obtain pure, monomeric
protein fractions (Supplementary Figs. 6 and 7 and Supplementary
Table 1). Michaelis—-Menten kinetic characterization of the purified
variants revealed a k_,,/K\,, 0f 16,000 + 2,000 M s for Al, the most
active design, and k.,/K\ values in the range of 35-140 M s™ for the
other four designs (Fig. 2c,d, Extended Data Fig. 3 and Extended Data
Table 1). For comparison, the k_,/K, of previously designed metallo-
hydrolases® ranged from 3 to 60 M s™ (Supplementary Table 2). Alis
also arelatively robust enzyme, and retains activity for at least 1,000
turnovers (Fig. 3e and Supplementary Fig. 8). Al differs considerably
from previously described proteins: the most similar structures identi-
fied through template modelling (TM) alignment with the Protein Data
Bank (PDB) and AlphaFold Protein Structure Database (AFDB) have
TMscores® of 0.41and 0.49, respectively, and do not have analogous
arrangements of catalytic residues (Extended DataFig. 4a,b). We refer
to Al as zinc metalloesterase 1 (ZETA 1) throughout the remainder of
the text.

Design ZETA_1not only has remarkably high activity but was also the
top-ranked designinourinsilico ranking. The structureinthe absence
of substrate was predicted to be very close to the design model by Alpha-
Fold2 (Extended DataFig.5aand Supplementary Figs.9and 10), and the
designed active site of ZETA_1was predicted to be highly preorganized
by PLACER, with the catalytic side chains fixed in place and the substrate
held closely in its designed position, adjacent to the proposed Zn(ll)
site. PLACER"is a deep neural network that, given a protein backbone
containing asubstrate, fully randomizes the positions of the substrate
and all side chains within a 600-atom sphere, and then generates new
coordinates for these groups'?; repeated PLACER trajectories generate
anensemble of possible side-chain conformations and small molecule
docks. Design ZETA 1stood out from the other designsin both the extent

of catalytic site preorganization (the catalytic side chains were largely
fixed inspacein catalytically competent conformations) and the posi-
tioning of the substrate-transitionstateinthe active site (inthe ZETA_1
ensemble, the substrate remained largely fixed in space in the active
site, whereasin theinactive designs H7 and HS, it fluctuated consider-
ably) (Fig. 2e-h and Supplementary Videos 2-5). Seven designs based
on the same ZETA_1 backbone family were initially filtered out during
the design selection phase, as they had suboptimal PLACER metrics;
we retrospectively expressed and purified these designs and found
that they had very low or no activity, further highlighting the utility of
PLACER ensemble calculations for identifying active designs (Supple-
mentary Fig.11). These findings suggest that combining global structure
prediction with detailed PLACER modelling of the active site providesa
powerfulapproachto assessing the catalytic machinery and substrate
binding geometry for design selection (Supplementary Fig.10).

The ZETA 1 active site consists of a primarily hydrophobic pocket
with three histidines binding Zn(ll) with their Ne atoms, an aspartate
as a potential general base, and an asparagine that forms a hydro-
gen bond to the coumarin ring (Fig. 3a). As in the original theozyme
model used to generate ZETA_1, the Zn(ll) ion also acts as an oxy-
anion hole, stabilizing the developing negative charge at the tran-
sition state; there are no nearby side-chain hydrogen bond donors
(Extended Data Fig. 5). Zinc is absolutely critical for ZETA_1 activity:
extraction of bound Zn(ll) by dialysis in the presence of the chelator
1,10-phenanthroline completely eliminated activity, and activity was
subsequently restored by addition of zinc to the solution (Fig. 3f).
Zinc titration experiments measured a dissociation constant (Kp)
for Zn(ll) of 41 £ 5 nM, which is similar to those of previous designed
zinc enzymes?**, but higher than native zinc hydrolases®*°**2, which
typically have K, values less than 10 nM.

We carried out mutagenesis experiments to probe the contribu-
tions of the designed catalytic residues to Zn(Il)-binding and catalysis
(Fig.3g-iand Supplementary Figs.12-14). In the design model, N17 posi-
tions the substrate by hydrogen bonding with the lactone carbonyl of
the coumarin moiety and could stabilize the developing negative charge
on the leaving group; the N17A mutation led to a 8.1-fold decrease in
k.../Ky (Supplementary Fig.13). Mutation of all three metal-coordinating
histidine residues to alanine simultaneously (H118A/H130A/H134A), as
well as two of the three single histidine-to-alanine substitutions (H118A/
H134A), completely inactivated the enzyme, as expected. Mutating
the third Zn(ll)-coordinating residue to alanine (H130A) resulted in
a decrease of only 13-fold in k.,/Ky, and mutation of the proposed
general base D67 to alanine had little effect on k,./Ky, and increased
Zn(Il)-binding affinity. These results suggest that H134/H118/H130
and H134/H118/D67 may be competing Zn(Il)-binding sites owing to
the close proximity of the coordinating side chains of H130 and D67,
which was corroborated by Chai-1(ref. 13) predictions of the protein-
Zn(ll)-substrate complex (Extended Data Fig. 5b,c); the D67A mutation
may confine the zinc to the originally designed coordination sphere
with the three histidines, whichis more catalytically competent.Inthe
H130A mutant, D67 is likely to coordinate Zn(Il) and maintain binding,
albeitin a less optimal binding geometry, lowering the zinc affinity
and enzyme activity.

Guided by these observations, we started from new DFT theozymes
explicitly containing the catalytic base, and generated protein struc-
tures scaffolding these theozymes using a newer version of RFdiffu-
sion2 trained from random weight initialization on a threefold-larger
dataset (previous versions were fine-tuned from structure prediction
weights) (Fig. 4a, Supplementary Data 1 and Supplementary Meth-
ods 4.2). Designs whose Chai-1 predictions of the protein-Zn(ll)-
substrate phosphonate ester complex, mimicking the reaction transi-
tion state, closely matched the design models with high confidence
were identified by PLACER to have highly preorganized active sites
(Supplementary Figs. 15 and 16). Ninety-six such designs spanning 37
RFdiffusion2-generated backbones were selected for experimental
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Fig.2|Activity characterization and PLACER preorganization assessment.
a, Design models of the most active designs. Sequence length (inamino

acids (aa)) and the secondary structure harbouring each catalytic histidine
areindicated below. b, Reaction progress curves. The dashed black lineis the
buffer background. c, Michaelis-Menten characterization of A1(ZETA_1). The
yaxisshows theinitial rate v, divided by the total enzyme concentration ([E],).
d, Michaelis—-Menten parameters of mostactive designs. e,f, Distribution of
PLACER active site preorganization ensemble metrics for the ordered designs.
Average design-prediction substrate r.m.s.d. (e) and average catalytic and
binding residue design-predictionr.m.s.d. (f) across all predicted ensembles

characterization (Supplementary Fig. 17 and Supplementary Data
2 and 3). Eighty-five of the 96 designs were expressed and soluble
(Supplementary Fig. 18), and 11 designs spanning 3 different folds
had substantial zinc-dependent 4MU-PA hydrolysis activity (Fig. 4b,c
and Supplementary Fig. 19). Michaelis—Menten analysis revealed
that 5 designs had a k.,/Ky, greater than 10*M™s™ and 6 designs
had a k_,./K,, greater than 10°M™ s! (Fig. 4d, Extended Data Fig. 6 and
Extended Data Table 1). The most active designs for each backbone
had a k_,/Ky = 53,000 + 5,000 M s™ (ZETA_2), k.,./Ky=19,000 *+
2,000 M's™(ZETA 3),and k.,/K\,=1,100 + 200 M s 1(ZETA 4) (Fig.4f-h
and Supplementary Fig.20).ZETA 2 hasak_,, =1.5 + 0.1s™, athreefold
increase over the k., of ZETA 1, and close to that of the metallohydrolase
MID1scl0 obtained after 10 rounds of directed evolution®. RFdiffu-
sion2 enables specification of the position of the substrate relative
to the centre of mass of the designed protein; for ZETA_2 and ZETA 3,
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generated by PLACER for each design. g, For ZETA_1, the substrate positionin
PLACER ensemblesis close to the design model, whereas in theinactive design
H7,the substrate position fluctuates widely. h, For ZETA_1, the side chains
surroundingthe activesite arelargely fixed in positions close to the original
design model, whereasin the inactive H8 design, the side-chain positions vary
considerably. Note that only the first five randomly generated, unranked
ensemble predictions are shown for PLACERing,h. Datarepresentthe mean +s.d.
ofthreeindependent measurements ofinitial velocity (c) and Michaelis-Menten
parameters (d).

the protein was centred near the phenylacetate and 4-methylumbel-
liferylmoieties, respectively, of 4MU-PA, resulting in opposite substrate
binding modes in the design models (that is, the 4-methylumbellif-
erylisexposedin ZETA_2 and the phenylacetate is exposed in ZETA_3)
(Extended Data Fig. 7).

The success rate in the second design campaign was considerably
higher than the first campaign (11 out of 96 versus 1 out of 96 designs
withk,,/Ky greater than10°M™s™), supporting the conclusions from the
first round analysis (Supplementary Figs. 21-26, Supplementary Table 3,
Supplementary Discussion 2 and Supplementary Methods 4.2). Circular
dichroism experiments confirmed that all active enzyme scaffolds
from both design campaigns possess secondary structures consist-
ent with their design models, indicating proper folding (Supplemen-
tary Fig. 21). The structures of ZETA_1-4 are rather different from each
otherand previously known metallohydrolases (Extended DataFig. 4).
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Fig.3|Characterization of ZETA_1activity.a, ZETA_1design model (left) with
close-up view of the active site showing the catalytic residues (middle) and a
surface view of the designed pocket revealing high shape-complementarity

to the substrate (right). b, Size-exclusion chromatogram of ZETA_1showinga
single peak corresponding to monomeric protein. ¢, Circular dichroism spectra
of ZETA _1recorded every 10 °C from 25 °Cto 95 °C (viridis colour gradient), and
afterrecoolingto25°C (grey). The spectrasuggest that ZETA_1has an a-helical
secondary structure and that it canrefold after heating and partial unfolding.
MRE, meanresidue ellipticity. d, Circular dichroism signal at 222 nm measured
everyl°Cand plotted as afunction of temperature. e, [Product]:[enzyme]
progress curveshowsthat ZETA_1hydrolyses more than1,000 4MU-PA molecules
perenzyme. Note that thebackgroundreaction has beensubtracted fromthe

The sequence positions of the catalytic residuesin each of these enzy-
mes are also very different, highlighting the diversity of RFdiffusion2
generated design solutions (Fig.4cand Supplementary Tables4 and 5).

We determined the structure of ZETA_2, the most active design, in
theapostateat 3.5 Ausing X-ray crystallography (PDB: 9PYJ; Fig. 5). The
experimental structure is in good agreement with the design model,
with nearly superimposable backbones (Ca root mean squared devia-
tion (r.m.s.d.) = 1.1A) and the catalytic residues preorganized in the
designed geometry (Fig.5a,b). The binding pocket iscomplementary
to the superimposed transition state from the design model (Fig. 5c).
We also solved a 2.1 A structure after soaking ZETA 2 in Zn(ll) (PDB:
9PYL; Extended Data Fig. 8); whereas the backbone was again nearly

spectrasothateveryturnover canbeattributed to the enzyme (Supplementary
Fig.8; further detailsin Supplementary Information, section 4.3).f, Reaction
progress curves for the Zn(Il) holo- and zinc-free apo ZETA_1 proteins showing
zinc-dependent activity. Adding excess Zn(ll) to the apo ZETA_1sample after
30 minre-establishes the activity, demonstrating that zinc is essential for the
catalytic mechanism of ZETA_1. WT, wild type. g, Zinc affinity of wild-type and
mutant ZETA_1, measured as the dissociation constant (K;,), where alower value
indicates tighter binding. h, Fluorescence progress curves comparing the
activity of wild-type and mutant ZETA 1.1, k.,/Ky for active ZETA_1 mutants
compared withthewild type. Datarepresentthe mean +s.d. of threeindependent
measurements of turnover number (e), fluorescence progress curves (f,h),
Zn(l1)-binding dissociation constant (g) and Michaelis—-Menten parameters (i).

superimposable with the design model (Car.m.s.d.=0.8 A) and a
Zn(1l) ion was present with 100% occupancy at the designed location
(r.m.s.d.=1.7 A), one of the Zn(Il)-coordinating histidines (H110) was
flipped out tointeract withaZn(ll) ionbound at the surface of the pro-
tein, probably because of the high Zn(ll) concentration in the crystal
soaking buffer (250 mM) (Extended Data Fig. 8).

Conclusion

Here we demonstrate that RFdiffusion2 can generate highly active
metallohydrolases directly fromactive site configurations obtained by
quantum chemistry calculations. The zero-shot design of an enzyme
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(ZETA_1) with ak,/Ky greater than10*M™ s'—the top-ranked in silico
design out of a total of 96 tested straight from the computer, with no
experimental optimization—is a considerable advance for de novo
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scaffolds using the schemeinb,c. Activities are higher, on average, thanin
the first round of designs (blue). f-h, Design model (left) with close-up view
oftheactivesite (middle) for ZETA_2 (f), ZETA_3 (g) and ZETA_4 (h). Right,
Michaelis-Menten plots and parameters. Datarepresent the mean +s.d. of
three independent measurements of Michaelis—-Menten parameters (d,e) and
initial velocity (f-h).

enzyme design, which has previously required extensive design screen-
ing and directed evolution to achieve activities at this level'**, The
robustness of our design strategy is demonstrated by the zero-shot



a De: /crystal
Cormsd.=1.1A

Fig.5|Crystalstructure of ZETA_2 closely resembles the design model.

a, Casuperposition of the design model and the X-ray crystal structure of ZETA 2
(PDB:9PY))inthe apostate, resolved at 3.5 Aresolution. Catalytic residues are
shown assticks. Thestructures arein close agreement (Car.m.s.d.=1.1A) and
the catalyticresiduesin the experimental structure are preorganized close to
their designed catalytic geometry. b,c, Magnification of the active site of
ZETA_2, highlighting the agreementbetween the experimental and designed
catalyticgeometry (b) and the shape-complementarity of the designed binding
pocketand the transition state model (superimposed in from the design
model) (c). The crystal structureisshowningrey and the design modelisin
colourinall panels.

design of 3 additional enzymes from a new set of 96 designs tested
straight from the computer: ZETA_2 and ZETA_3, with a k,/Ky, of
morethan10*M™s™, and ZETA 4, withak_,/K,,greater than10°Ms™.,
ZETA_1-4 have structures that are very different from each other
and from previously known structures. The catalytic efficiencies of
ZETA_1-3 arewithinthe range typically observed for native metallohy-
drolases with similar substrates (k.,/Ky =10*-10° M s™) and greater
than for all previously designed metallohydrolases prior to optimi-
zation** ¥ (Supplementary Table 2). Experimental characterization
of ZETA_1and ZETA_2 provide strong evidence that they function as
designed, utilizing abound Zn(lIl) ion to activate awater molecule for
nucleophilic attack and tostabilize the resulting oxyanionintermediate
and flanking transition states. The results from PLACER and the Chai-1
ensembles suggest that the key to obtaining k_,./K,, of over 10*M™s™!
is precise substrate placement relative to the activated water and the
Zn(Il) ion. Future metallohydrolase design efforts that: (1) position
the general base such that it cannot reconfigure to interact with the
bound metal ion (as in the case of ZETA _1); (2) better preorganize the
metal-binding residues; and (3) incorporate further side-chain oxy-
anionstabilization, could increase activity to levels comparable to the
most active native metallohydrolases.

Our RFdiffusion2-PLACER design approach has many advantages
over previous de novo enzyme design methods and should be broadly
applicable for generating efficient catalysts for a wide diversity
of chemical reactions. By enabling direct scaffolding of side-chain
functional groups, rather than backbone N-Ca-C=0 coordinates as
required in enzyme design calculations with RFdiffusion?, RFdiffu-
sion2 bypasses the need for explicit enumeration of catalytic side-chain
rotamer conformations and placement of the catalytic residues along
the linear sequence—this enables each design trajectory to sample
from the enormous space of possibilities rather than being confined
to a small subspace. Assessment of active site preorganization and

substrate-transition state positioning with PLACER and Chai-1proved
remarkably effective atidentifying the most active designs; this result,
together with similar observations with de novo designed serine hydro-
lases' and retroaldolases®, suggests that PLACER and related deep
learning approaches will be widely useful for design ranking. In our
laboratory, we have found the RFdiffusion2-PLACER design approach
described here toyield biocatalysts for avariety of bond-breaking and
bond-making chemical reactions, and we look forward to seeing what
the broader design community can generate with these tools, which
we are making freely available.
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Data availability

All data are available in the main text or as supplementary materials,
including the DFT coordinates of the theozymes from each design
campaign (Supplementary Data 1), the ordered protein sequences
from each design campaign (Supplementary Data 2) and the design
models of the ordered sequences from each design campaign (Sup-
plementary Data 3). For gel source data, see Supplementary Fig. 27.
Protein crystal structure coordinates and structure factors are avail-
ableinthe Protein Data Bank with PDB IDs 9PY]J (apo ZETA_2) and 9PYL
(Zn(Il)-bound ZETA 2).

Code availability

RFdiffusion2 is publicly available on GitHub at https://github.com/
RosettaCommons/RFdiffusion2. PLACERis publicly available on GitHub
at https://github.com/baker-laboratory/PLACER. Other design scripts
andJupyterHub notebooks of the design pipelines used to design met-
allohydrolases are publicly available on GitHub at https://github.com/
baker-laboratory/Metallohydrolase_Enzyme_Design.
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Extended DataFig.1| Catalytic constraints and enumerative catalytic motif
scaffolding around theozymes for RFdiffusion2 compared to RFdiffusion.
a, Example theozyme from DFT with relevant ligand atoms labeled and Rosetta
constraint file labeling for the histidine side chains. Catalytic constraint files
specifying the coordination geometry of the histidines were created at this
step for each of the 4 theozymes from DFT. Note that N, is ageneral Rosetta
label thataccommodates epsilon and delta coordination geometries with
zinc.b, Theozyme sampling enumeration pipeline with diverging paths for

(assuming 100 AA protein with only 10 rotamers each for x1, x2, and y)

RFdiffusion2 and RFdiffusion. ¢, Side chain enumeration sampling different
combinations of zinc coordination and imidazole orientations. Note that there
areonly 64 permutations of coordination and Cf positioning. d, Backbone
enumeration for RFdiffusion. Thisis required in addition to the samplingin (c).
e, Calculation of the total number of possible RFdiffusion2 and RFdiffusion
inputs. Itshould be noted that not all combinations of rotamers and sequence
positions will be viable, somewhat reducing the total number, but to nowhere
near the tiny enumeration space needed for RFdiffusion2.
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Extended DataFig. 3 | Michaelis-Mentenkinetic characterization of the
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a A1 (ZETA_1)/8GYN
TM-score = 0.41
seqid=52%

c H10 (ZETA_2)/2VeY
TM-score = 0.50
seqid=9.1%

e H6 (ZETA_3)/5FUC
TM-score = 0.45
seqid=3.5%

g C5 (ZETA _4)/6Y06
TM-score = 0.50
seqid=4.7%

Extended DataFig. 4 |Structuralnovelty of the ZETA_1-4 designs. Global Cx
alignment of the ZETA_1-4 design models with their most similar structuresin
the Protein Data Bank and AlphaFold2 Database based on TM-score, respectively.

a,b, ZETA_laligned with (a) PDB structure 8GYM and (b) AF2 prediction
AOA176QCW?7.c,d, ZETA 2 aligned with (c) PDB structure 2V6Y and (d) AF2

prediction AOAS58CL52. e,f,ZETA_3 aligned with (e) PDB structure SFUC and

b A1 (ZETA 1)/ AOA176QCW7
TM-score = 0.49
seqid=5.3%

d H10 (ZETA 2)/AOA558CL52
TM-score = 0.61
seqid=8.1%

f H6 (ZETA 3)/AOA1B7XEXO
TM-score = 0.50

h C5 (ZETA 4) 1 ADA353XWA2
TM-score = 0.56
seqid =3.6 %

(f) AF2 prediction AOA1B7XEXO.g,h, ZETA _4 aligned with (g) PDB structure
6Y06 and (h) AF2 prediction AOA353XWA2.Inall cases, the designed proteins
areshownina colourgradient,and the PDB/AF2 structures are shownin grey.
The pooralignment, low sequence identity,and modest TM-scores highlight
the novelty of these de novo scaffolds.
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Al
DESIG  / AF2 (RMSD Ca = 0.458)

Extended DataFig.5|Predicted structures ofthe A1(ZETA_1) design.

a, Activesite of the Aldesign model with pocket residues labeled. Designed
structureis coloured and AlphaFold2 apo-predicted structureis grey.
Thestructuresareinhigh agreement, suggestingthat Alhasahigh degree

of preorganization. b, Global and active site comparison of the Al design
(colored) with model O of the Chai-12® structure sequence/scaffold) with Zn(lI)
and 4MU-PA. The substrate SMILES file was provided to Chai-1, not the
tetrahedralintermediate, whereas the Al design model contains the transition
state of the nucleophilic attack of hydroxide to the substrate. The global scaffold
fold prediction by Chai-lis nearly identical to the design model scaffold (r.m.s.d.
Ca=0.413). Additionally, the zinc and substrate docking positions by Chai-1are
nearly identical to the design model; model O of Chai-1also predicts the zinc
being coordinated by the 3 histidines (H118, H130, H134) in nearly the same

DESIG!' / Chai-1 (model 0)

DESIG'' / Chai-1 (model 1)

orientationsasthe design model. ¢, Global and active site comparison of the A1
design model (coloured) with model 1of the Chai-1structural prediction (grey)
inthe presence of zincand 4MU-PA. Note this is shown from the side/back view.
Again, the global scaffold fold prediction and substrate docking position by
Chai-lare nearlyidentical to the design model. Interestingly, Chai-1 predicts
aslightly different zinc docking positionin model 1with H130 flipped away
fromthe active site, and D67 is instead coordinating zinc with the other two
histidines (H118 and H134). This supports the hypothesis that H130 and D67 are
competitively binding zinc, explaining the results observed from the mutant
activity and zincbinding experiments. Thus, itis unlikely that D67 is functioning
efficiently, ifatall, as ageneralbase, providing arational starting point for
potential redesign.
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Extended DataFig. 6| Michaelis-Mentenkinetics of eleven major hits from the second design campaign. a-c, Kinetics of designs grouped by (a) ZETA_2 scaffold,
(b) ZETA_3 scaffold, and (c) ZETA_4 scaffold.
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Extended DataFig.7|Opposite substratebindingmodesinZETA_2and
ZETA 3 design models result from ORI placement. The ORI tokenisan
optional coordinate fed to the updated RFdiffusion2, whichinstructs the model
onwhereitshould aimto generate the protein center of mass (Supplementary
Methods 4.2). Thus, the ORI token can be used to specify which parts of the
substrate/theozyme should be more surrounded by protein (buried) onaverage.
ZETA_2(right) and ZETA_3 (left) are designed to bind the substrate in opposite

ZETA 2 Protein

Generation

ORI token

orientations; thisarose from the opposite placement of ORI tokens with respect
tothe substrate. The bottom panels show a cross-section of the design models
for these enzymes with the surface view to observe the designed substrate
binding pocket.InZETA_3 (left) the PAis solvent-exposed and the 4MU is
buried because the ORItoken is nexttothe 4MU.In ZETA 2 (right) the 4MU is
solvent-exposed and the PAis buried because the ORI token is next to the PA.
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Extended DataFig. 8| Crystal structure of Zn(II)-bound ZETA _2 after
soaking. a, Casuperposition of the design model and the X-ray crystal structure
of ZETA_2 (PDB:9PYL) in the Zn(ll)-bound state from crystal soaking, resolved at
2.1Aresolution. Catalyticresidues shownas sticks and Zn(ll) ions shown as
greenspheres. The structuresarein close agreement (Car.m.s.d. = 0.8 A) and
the Zn(ll) ionis present with100% occupancy in the correct binding location
(r.m.s.d.=1.7 A).b, Active site close-up view with the 2mFobs-DFcalcelectron-
density map (blue mesh) contoured at1.0 o for the catalytic residues, Zn(ll) ion,
and water molecules. Surprisingly, one of the catalytic histidines (H110) is
flipped outinthe experimental structure tointeract withaZn(ll)ioninsolution,
likely because of the high Zn(Il) concentration used in the crystal-soaking
buffer. We hypothesize that this may be anintermediate conformational state

relevant to Zn(lIl)-binding that was captured and stabilized in the crystal.
Additionally, the catalytic base (E34) adopts a different conformation from the
catalytic conformationin this crystal structure; however, conformational
flexibility for this residue was also observed inthe apo-ZETA_2 crystal structure,
with one of the conformations being the catalytic conformation (Fig. 5b). These
conformations for E34 and H110 could be artifacts from the crystallization and
soaking process or may suggest that ZETA_2 has dynamic properties. Ifitis
dynamic, this poses aninteresting question of whether the dynamics accelerate
orhinder theactivity of ZETA_2. Future work could try to buttress these
residues with redesign or new de novo scaffolds to investigate if this would
increase or decreaseactivity. Crystal structure shownin grey and design model
shownin colourinall panels.
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Extended Data Table 1| Michaelis-Menten parameters for the hydrolysis of 4MU-PA by the designed de novo

metallohydrolases and mutants

Variant keatl Km (M1 s77) Keat (s77) K (M)
1st Design Campaign
A1 (ZETA_1) 16000 + 2000 0.51+0.03 32+4
A8 140 £ 10 0.012 + 0.001 85+5
B9 69 + 14 0.014 + 0.001 200 + 30
C4 100 £ 10 0.0028 + 0.0001 27+2
F7 35+5 0.0035 + 0.0003 100 £ 10
A1 (ZETA_1) Knockout Mutants
A1 H130A 1300 + 100 0.020 + 0.001 16+ 2
A1N17A 2000 + 100 0.031 + 0.001 16+ 1
A1 D67A 14000 + 2000 0.17 £ 0.01 12+ 1
A1 H118A Inactive Inactive Inactive
A1 H134A Inactive Inactive Inactive
A1 H118A;H130A;H134A Inactive Inactive Inactive
2nd Design Campaign

H10 (ZETA_2) 53000 + 5000 1.5+0.1 29+3
F11 27000 + 2000 0.91+0.03 34+3
H1 11000 + 1000 0.27 + 0.01 24+2
F8 7800 + 700 0.25+ 0.01 333
F2 5600 + 900 0.17 £ 0.01 315
H6 (ZETA_3) 19000 + 2000 0.31+0.01 16+ 2
B10 11000 + 1000 0.17 £ 0.01 15+ 1
B5 4500 + 900 0.057 + 0.004 13+2
D9 3200 + 800 0.043 + 0.004 13+ 3
F12 1500 + 200 0.023 + 0.001 15+2
C5 (ZETA_4) 1100 + 200 0.081 + 0.006 739




Extended Data Table 2 | Crystallography data collection and refinement statistics

Apo-ZETA_2
PDB Code: 9PYJ

Zn(ll)-bound ZETA_2
PDB Code: 9PYL

Data collection
Space group
Cell dimensions
a, b, c(A)
a,B,v()
Resolution (A)
Rsym Or Rmerge
/ol
Completeness (%)
Redundancy

Refinement

Resolution (A)

No. reflections

Ruwork I Riree

No. atoms
Protein
Ligand/ion
Water

B-factors
Protein
Ligand/ion
Water

R.m.s. deviations
Bond lengths (A)
Bond angles (°)

P 24

42.21,94.86, 50.38
90, 90, 90

94.86 - 3.49 (3.82 - 3.49) *
0.335 (0.935)

3.2(1.8)

99.0 (99.5)

6.7 (6.7)

50.38 - 3.49 (3.82 - 3.49)
4863
0.2287 (0.2369) / 0.2831 (0.2951)

3955
n/a
n/a

89
n/a
n/a

0.008
1.47

P 212124

42.71,52.62, 98.86
90, 90, 90

98.86 - 2.07 (2.13 - 2.07)
0.499 (1.418)

7.6 (2.1)

99.5 (99.2)

12.4 (12.4)

49.43 - 2.07 (2.23 - 2.07)
13975
0.2414 (0.2607) / 0.2950 (0.3561)

2002
3
70

26
42
30

0.003
0.47

*Single xtal used for each data/structure. *Values in parentheses are for highest-resolution shell.
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