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Atom-level enzyme active site scaffolding 
using RFdiffusion2
 

Woody Ahern1,2,3,7, Jason Yim4,5,7, Doug Tischer1,2,7, Saman Salike1,2, 
Seth M. Woodbury1,2, Donghyo Kim    1,2, Indrek Kalvet    1,2,6, Yakov Kipnis1,2,6, 
Brian Coventry    1,2,6, Han Raut Altae-Tran1,2, Magnus S. Bauer1,2, 
Regina Barzilay4,5, Tommi S. Jaakkola    4,5, Rohith Krishna    1,2   & 
David Baker    1,2,6 

Designing new enzymes typically begins with idealized arrangements of 
catalytic functional groups around a reaction transition state, then attempts 
to generate protein structures that precisely position these groups. Current 
AI-based methods can create active enzymes but require predefined residue 
positions and rely on reverse-building residue backbones from side-chain 
placements, which limits design flexibility. Here we show that a new deep 
generative model, RoseTTAFold diffusion 2 (RFdiffusion2), overcomes 
these constraints by designing enzymes directly from functional group 
geometries without specifying residue order or performing inverse rotamer 
generation. RFdiffusion2 successfully generates scaffolds for all 41 active 
sites in a diverse benchmark, compared to 16 using previous methods. We 
further design enzymes for three distinct catalytic mechanisms and identify 
active candidates after experimentally testing fewer than 96 sequences in 
each case. These results highlight the potential of atomic-level generative 
modeling to create de novo enzymes directly from reaction mechanisms.

A grand challenge in de novo protein design is the generation of 
enzymes that catalyze novel reactions. De novo enzyme design starts 
from a detailed description of an active site composition and geom-
etry predicted to catalyze the reaction of interest. This active site 
description, called a theozyme, describes placement of protein func-
tional groups around the reaction transition state(s) and any reaction 
cofactors1,2. The de novo enzyme design task is to generate protein 
scaffolds that accommodate such theozymes. Pre-deep learning meth-
ods such as RosettaMatch searched through sets of already existing 
native or designed3 scaffolds for possible placements of the catalytic 
residues. While many enzymes were designed using this approach, it 
was restricted to theozyme geometries that could be matched to the 
input scaffold set4. Advances in deep learning with diffusion models5–8 
have removed the need for scaffold libraries for many substructure 

scaffolding tasks by directly sampling diverse proteins containing 
the desired substructure (motif) through a technique known as motif 
scaffolding9–12. However, thus far, these methods all operate on a 
backbone-level representation of proteins as a series of amino acid 
residues and, consequently, can only scaffold motifs represented at 
the backbone level.

Current approaches attempt to overcome this limitation for 
atom-level active site descriptions by enumerating possible confor-
mations and sequence indices for the catalytic residues and then in a 
separate step using motif scaffolding to generate proteins that scaffold 
these backbone positions13,14. While active enzymes have been gener-
ated using this approach, it is computationally inefficient and does 
not scale to more complex active sites as the number of combinations 
of backbone coordinates to scaffold grows exponentially with the 
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RFdiffusion and RFDiffusionAA, we found performance started to 
worsen over extended periods of training (Supplementary Fig. 1). 
Through a combination of auxiliary losses and self-conditioning19, 
these methods were able to achieve high success rates on their respec-
tive tasks in short training sessions. Due to the complexity of the unin-
dexed atomic motif-scaffolding task, we expected that a stable 
objective would be required. To this end, we train RFdiffusion2 with 
flow matching7,8, a simpler framework for diffusion models20,21 shown 
empirically to have improved training and generation efficiency in 
other domains22. Briefly, this framework interpolates a training exam-
ple toward a noise sample and trains a neural network to denoise by 
predicting the original, uncorrupted example. If trained to denoise 
with sufficient accuracy, the model can sample from the data distribu-
tion by iteratively denoising a sample drawn from the noise prior. Our 
representation of the data distribution contains both atoms and back-
bone frames that are elements of ℝ3 and SE(3), respectively. Flow 
matching on ℝ3 follows its original derivation using Gaussian probabil-
ity paths, while for SE(3) we follow the formulation in FrameFlow23,24 
that utilizes Riemannian flow matching25 and removes approximations 
for rotational losses present in the RFdiffusion9. With these improve-
ments, RFdiffusion2 trained stably from randomly initialized neural 
network weights, and does not require auxiliary losses or use 
self-conditioning. Decoupling RFdiffusion2 from structure prediction 
removes constraints around the neural network architecture and ena-
bles new generative modeling tasks.

Our training dataset consists of biomolecular structures 
from the Protein Data Bank (PDB)26 that include proteins, protein–
small-molecule complexes, protein–metal complexes and covalently 
modified proteins, filtering out common solvents and crystallization 
additives18. Each structure undergoes a motif extraction procedure 
to construct a motif-scaffolding training example. First, we select a 
random subset of residues to be the motif. Motif residues are chosen 
uniformly at random to ensure RFdiffusion2 sees a diverse range of 
interatomic geometries in the motif. Second, each motif residue is 
represented as either a frame or an atomized residue. If a motif residue 
is atomized, only a random subgraph of the amino acid heavy atoms 
are provided as the motif. Third, we decide whether the motif will be 
featurized as indexed or unindexed. Lastly, for any ligand present, we 
sample a random connected subgraph of its heavy atoms to be pro-
vided as a motif with relative accessible surface area (RASA)27,28 labels 
for each atom in the ligand intermittently provided. We resample the 
motif on each training step as a form of data augmentation to ensure 
that the same noised structure is not always shown alongside the same 
motif. We train the final model for 17 days using 24 A100 Nvidia GPUs.

In our early experiments with flow matching, we found that the 
choice of how the ground-truth structures were centered relative to 
the origin in training substantially affected the quality of inference 
outputs. A natural strategy is to globally center each ground-truth 
structure; however, this leaks the offset between the scaffold center 
of mass and the motif. At inference time, this strategy requires the 
exact specification of the desired offset, which is usually not known. A 
common fix for this pathology in motif-scaffolding diffusion models 
is to center ground-truth structures on the motif, allowing the model 
to determine the offset between the scaffold center of mass and the 
motif12,24. However even when the motif is centered, due to the inter-
polation scheme used in flow matching, the model is able to exactly 
determine this offset from any partially noised structure. The resultant 
behavior is that in the first denoising step, in which the network receives 
pure noise, it predicts an offset that it does not learn to refine in sub-
sequent denoising steps. We instead introduce ‘stochastic centering’, 
which first centers the ground-truth structure and adds a small global 
translation sampled from a three-dimensional Gaussian such that the 
noised input structures only encode an approximate offset between 
the motif and scaffold. This enables the model to refine the placement 
of the motif within the overall structure over the course of the inference 

number of catalytic residues. A method capable of scaffolding com-
plex theozymes described at the atom level would have widespread 
applications for enzyme design and beyond15–17.

We reasoned that substantially improved performance on more 
complex enzyme active site scaffolding challenges could be achieved 
by a generative model capable of selecting the conformations and 
sequence indices of the catalytic residues by modeling the full joint 
distribution of rotamers, sequence indices and scaffolds conditioned 
directly on atom-level active site descriptions. With RFdiffusion2, we 
set out to extend RoseTTAFold diffusion All-Atom (RFdiffusionAA)18 to 
generate structures conditioned on these minimal active site descrip-
tions (Fig. 1).

Atomic motif conditioning
To address this challenge, we sought to generalize motif scaf-
folding beyond sequence indexed, backbone-level motifs. Prior 
motif-scaffolding methods represent motifs as ‘backbone frames’, 
in which each amino acid’s N, Cα, C backbone atoms are parameter-
ized as an element in SE(3). Each motif frame requires a prespecified 
sequence index that indicates the frame’s location along the backbone 
chain. In contrast, the protein component of an atom-level active site 
description includes only the side-chain functional group atoms, not 
the backbone, of the participating amino acid residues; these residues 
can be anywhere along the sequence and hence do not have a specified 
index. While the indexed frame representation is sufficient for scaffold-
ing large contiguous domains that can be accurately described at the 
residue level, it is insufficient to express the task of scaffolding discon-
nected groups of atoms belonging to residues of unknown indices.

Our approach is to create an extended representation with dif-
fering levels of resolution and index information that is capable of 
expressing more complex motifs. In RFdiffusion2, we use the RoseT-
TAFold All-Atom neural network architecture in which each residue in 
the input and output can be represented as a frame or as heavy atom 
coordinates (an atomized residue)18. During training, we represent 
some residues with frames and atomize others. For each atomized resi-
due, the network learns to model the distribution of side-chain poses. 
By providing known coordinates for some side-chain atoms, which we 
term the atomic motif, the network learns to model the distribution of 
proteins conditioned on the inclusion of such atomic substructures. At 
inference time, we can then condition on the coordinates of individual 
protein atoms such as the side-chain (or backbone) functional groups 
present in a theozyme, along with any ligand atoms representing transi-
tion state geometry. This ability to condition on individual atoms rather 
than entire residues allows us to forgo inverse rotamer sampling4 used 
in previous approaches and instead allow the model to simultaneously 
infer an appropriate rotamer and scaffold.

We can further extend the representation to remove the need to 
know the sequence indices of a motif to scaffold it. During training, 
we select subsets of residues, duplicate them and remove their index 
features to create ‘unindexed residues’. Without any auxiliary losses, 
the network learns that unindexed residues are always superimposed 
on indexed residues in unnoised structures. By providing coordinates 
for unindexed residues, which we term an ‘unindexed motif’, the net-
work learns to model the distribution of proteins conditioned on the 
inclusion of a known substructure at unknown indices. At inference 
time, we then have the flexibility to condition on a motif consisting of 
residues with known or unknown indices because theozymes do not 
prescribe the sequence indices of their constituent residues. The ability 
to condition on motifs without specifying their indices enables us to 
forgo naive index sampling used in previous approaches and instead 
allow the model to simultaneously infer indices for the motif while 
scaffolding it (Fig. 2b).

The resulting model, RFdiffusion2, can generate proteins condi-
tioned on a broad range of motifs including side-chain motifs, motifs 
without known sequence indices and ligand motifs. When training 
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trajectory. At inference time, users supply a prior belief about the 
placement of the motif through a special ORI pseudo-atom that speci-
fies the approximate center of mass of the generated structure. This 
enables enzyme designers to control the active site and transition state 

orientation relative to the protein core (Fig. 2d). For example, given an 
elongated small-molecule or transition state with one end quite polar or 
charged, placement of the ORI token adjacent to the opposite end (or 
displaced from this end along a vector running through the long axis 
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Fig. 1 | RFdiffusion2 overview. a, De novo enzyme design starts from a 
configuration of catalytic groups around the reaction transition state(s)  
(a theozyme) generated using quantum chemistry, protein structural analysis 
and/or chemical reasoning. b, RFdiffusion2 generates protein structures that 
support the theozyme. In row 1, the backbone trajectory shows the amino acid 
residue frames (pastel) as they transform from a sample drawn from the noise 
distribution into a protein backbone. Row 2—a zoom-in of row 1—shows the 
non-motif side-chain atoms (slate gray) connecting the atomic motif (teal) with 
the protein backbone. At t = 1 the intra-residue bonds are shown for the atomized 
residues. Right, The distances between the Cα coordinates of the unindexed, 
atomized residues and the backbone residues they superimpose at t = 1. Over 
the course of the trajectory, the model matches these unindexed residues to 
indexed residues of the protein backbone, such that by the end of the trajectory 

the unindexed residue’s Cα occupies the same location as the Cα of the protein 
backbone in Euclidean space. c, The design pipeline starts from the input 
theozyme, followed by RFdiffusion2 to generate the structure, and LigandMPNN 
to generate amino acid sequences that encode the structure and stabilize the 
transition state. Designs are evaluated by all-atom structure prediction (for 
example, using Chai-1 and AF3) and are considered an in silico success if the 
design (pastel) and prediction (light gray) align to a sufficient degree. Two 
representative examples of consistency between design model and predicted 
structure at the level we take to constitute a success are shown in the right panels. 
The two cases pictured are the creatinase and taurine dioxygenase motifs from 
the AME benchmark described in ‘AME benchmark’ in the Results (AME IDs: 
M0096_1chm AND M0129_1os7).
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of the molecule) results in a designed binder or enzyme with a binding 
pocket extending radially from the center of the protein with the polar/
charged end of the small molecule exposed to solvent.

RFdiffusion2 provides two additional conditioning capabilities of 
the ligand that are useful in de novo enzyme design. First, to provide 
finer control over the depth at which each reactant and/or cofactor is 
buried within the protein, we enable users to specify the RASA of each 
atom. By providing the RASA of each ligand atom 50% of the time dur-
ing training, RFdiffusion2 learns to generate structures that respect 
those atom-wise conditions at inference time when provided (Fig. 2c). 
Second, the user may know the ligand atoms of a transition state but 
may not know the full ligand conformer. We allow the user to specify 
‘partial ligands’ where only the known ligand atoms are provided while 
RFdiffusion2 infers the rest of the ligand conformer. Analysis of the 
physical plausibility of the generated conformers shows they match 
closely with RDkit-generated conformers (Supplementary Fig. 3). 
We find RFdiffusion2 can, given partial ligand coordinates, sample 
physically realistic conformers for the entire ligand (Fig. 2d), remov-
ing the need to prespecify the complete ligand conformer with an 
external tool. Together, the conditioning capabilities open up greater 
control over the geometric properties of the protein–ligand complex 
during inference.

Results
AME benchmark
An in silico enzyme motif-scaffolding benchmark was introduced in 
RFdiffusion9,29 which contained one active site from each of the five 
most represented Enzyme Commission (EC) classes in the Mechanism 
and Catalytic Site Atlas (M-CSA)30. We find that this benchmark does 
not accurately reflect the challenges of de novo enzyme design due to 
its use of indexed backbone motifs, lack of ligands and lack of active 
site diversity with only five enzyme cases. To evaluate RFdiffusion2, 
we developed a new benchmark that better reflects the theozyme scaf-
folding problem of de novo enzyme design.

We cross-referenced the 958 hand-curated catalytic active sites 
downloaded from the M-CSA with the Proportion of Atoms Residing 
In Identical Topology (PARITY)31 dataset and selected reactions with 
PDB crystal structures where all reactants and cofactors were pre-
sent. After curation, we found 41 active sites spanning a diverse set of 
reactions in EC29 classes 1–5 (Fig. 3a; EC classes 1–5 account for 96% of 
examples in M-CSA). The annotations in M-CSA are at the residue level, 
so we extracted random connected sets of atoms from each catalytic 
residue to treat as the protein component of the theozyme for each 
benchmark case (Fig. 3b).

We evaluate RFdiffusion and RFdiffusion2 by sampling 100 struc-
tures for each benchmark case with the atomic motif as conditioning 
information. We assign eight sequences to each structure with Ligan-
dMPNN32, conditioned on the backbone, catalytic residue side-chain 
and ligand coordinates. To evaluate whether the sequences fold to 
the intended structures, we use Chai-1 (ref. 33), an open-source imple-
mentation of AlphaFold3 (ref. 34), for structure prediction rather than 
AlphaFold2 (ref. 35) because we find that Chai-1’s side-chain interac-
tion distances more closely align with the reference distribution of 
native side chains (Supplementary Fig. 2). We call a design an in silico 
success if (1) the root mean square deviation of all the heavy atoms in 
the catalytic residues is <1.5 Å when aligned on the backbone N, Cα, C 
of those catalytic residues in a Chai-1 prediction for at least one of the 
LigandMPNN sequences, and (2) the design contains no clashes with 
the ligand where a clash is defined as two atoms being within 1.5 Å. We 
release this benchmark that we call atomic motif enzyme (AME) for 
the scientific community.

To our knowledge, RFdiffusion is the only deep learning method 
that has been shown to successfully design de novo enzymes13,36. We 
compare RFdiffusion2 to RFdiffusion by establishing a pipeline that 
processes each atomic motif into a suitable input for RFdiffusion. The 
pipeline samples inverse rotamers and residue indices for the atomic 
motif to transform it into an indexed, backbone motif, and replaces the 
ligand with an attractive–repulsive potential. RFdiffusion2 generates 
enzymes conditioned directly on the theozyme without additional 
processing (Fig. 2a).

We find that RFdiffusion2 finds solutions to all 41 benchmark cases 
while RFdiffusion finds solutions for only 16/41 cases. In 40/41 cases, we 
find that RFdiffusion2 substantially outperforms RFdiffusion, setting 
a new state of the art for theozyme scaffolding (Fig. 3c). We find the dif-
ficulty of a benchmark case correlates with the complexity of the motif, 
which we quantify with the number of ‘residue islands’, the number of 
contiguous segments of catalytic residues in the original PDB structure. 
The in silico successes from RFdiffusion2 are quite different from any 
protein in the training set as measured by FoldSeek37 and template 
modeling (TM) score38 (Fig. 3d). Although the motif examples in AME 
come from the PDB, RFdiffusion2 is able to find completely new scaf-
folds that house these motifs.

We sought to understand the relative contribution of atomic motif 
and unindexed motif scaffolding to the improved in silico success 
rates of RFdiffusion2. To resolve the rotamers of the atomic motif, we 
compare three approaches: naive inverse rotamer sampling as done 
with RFdiffusion, inferring the rotamer with RFdiffusion2, and the 
reference case of using the rotamer present in the native structure. For 

Fig. 2 | Motif scaffolding with RFdiffusion2. a, In the original RFdiffusion, two 
preprocessing steps are required to transform an unindexed atomic motif into 
a suitable input. These steps—inverse rotamer sampling and sequence index 
sampling—both require selecting from an exponentially large search spaces 
of L!/(L − M)! and M(no. of possible rotamer states), respectively, where L is the number 
of residues, while M is the number of residues that are needed for the active 
site. RFdiffusion2 does not require such preprocessing steps and can scaffold 
unindexed atomic motifs directly. b, RFdiffusion2 can be conditioned on 
motifs in different representations. Three versions of the same motif (M0904; 
PDB 1QGX) from AME are shown on the leftmost column, different backbone 
samples in the middle columns, and the resulting diversity of sequence indices 
and rotamers on the rightmost columns. (i) The backbone motif includes a 
prespecified rotamer and index as required by RFdiffusion. (ii) The atomic motif 
has prespecified sequence indices but unspecified side-chain conformation. 
(iii) Only unindexed atom positions are provided, not the residue indices or 
side-chain rotamer conformations. The rotamer and sequence indices are 
sampled during the RFdiffusion2 trajectories, increasing the diversity of possible 
solutions to the motif-scaffolding problem. c, Each ligand atom can be labeled 
with a RASA category to control how solvent exposed the ligand is. The example 
RASA conditions are in the left column, a backbone sample with the ligand in 

the middle, and the distribution of ligand atom RASA from 100 designs with 
the RASA condition. When all atoms are labeled as exposed, the ligand RASA 
is concentrated around 1.0 and the backbone does not come into contact with 
the ligand. Conversely, when all atoms are labeled as buried, the ligand RASA 
is concentrated around 0; the sample shows the backbone almost completely 
covering the ligand. Labeling half the ligand as exposed and the other half as 
buried leads to RFdiffusion2 generating backbones that only bind to the buried 
side of the ligand. d, RFdiffusion2 can be provided with an ORI token that 
specifies the desired center of mass (CoM) of the scaffold with respect to the 
ligand. Two different ORI positions are shown in the left column. The middle 
column shows samples with scaffolds centered at the indicated ORI token 
positions. The distribution of CoMs from 100 sampled designs with the ORI token 
show that the scaffolds generally follow the ORI condition of where to place 
the scaffold. e, RFdiffusion2 can be provided with partial ligand input in which 
case it must sample the remaining ligand degrees of freedom while generating 
the protein. The left column shows the partial ligand input. The middle column 
shows in gray a conformer along with the protein generated by RFdiffusion2. 
Finally, the right column shows the distribution of ten generated conformers. 
In Supplementary Fig. 3, we analyze the physical plausibility of the generated 
conformers.
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specifying the index of the atomic motif, we compare combinatorial 
index sampling prior to generative modeling, as done in RFdiffusion, 
RFdiffusion2 inference of the index, and the reference case of using the 
index present in the native structure. We evaluated every combination 
of the settings over four cases in the AME benchmark where each case 
is randomly chosen from 3, 4, 5 and 6 residue islands. We find the best 
strategy is to infer both the rotamer and sequence indices—even sur-
passing using the native rotamer and sequence indices, which would 
not be available when designing enzymes for novel reactions (Fig. 3e). 
At four residue islands, we find the naive sampling strategy in RFdif-
fusion fails to achieve any in silico successes (Supplementary Table 1). 

We analyzed the diversity of the residues surrounding the motif and 
found the greatest structural diversity with the unindexed atomic 
motif strategy, followed by atomic motif and, lastly, backbone motifs 
with the lowest diversity (Supplementary Fig. 4). Our results show a 
deep learning approach to resolve the additional degrees of freedom 
represented by the rotamers and sequence indices is more effective 
than fixing these to specific values or pre-enumeration.

In vitro experiments
We next experimentally tested whether the model was capable of gener-
ating functional enzymes from theozymes. For two reactions, we used 
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theozymes from enzyme crystal structures to decouple the problem 
of theozyme design from theozyme scaffolding and directly assess 
the model’s capability on the latter. For another three reactions, we 
assessed whether it was possible to design a functional enzyme start-
ing from only a desired catalytic mechanism, that is, without a priori 
knowledge of a functional theozyme geometry. For these cases, we 
perform optimization with density functional theory (DFT) to find 
the saddle points of the energy landscape corresponding to transition 
state geometries of each case. In all five cases, we generate structures 
with RFdiffusion2 from the input theozyme, fit sequences to those 

structures, and filter them with structure prediction models to select 
designs for experimental validation. In all cases, we found functional 
enzymes when testing less than 96 designed proteins. The specifics of 
theozyme preparation and experimental characterization for these 
four reactions are described below.

The aldol reaction forms carbon–carbon bonds between two 
carbonyl reactants. Enzymatic catalysis of this reaction allows for 
regiochemical and stereochemical control that would be impossi-
ble with nonbiological catalysts. Directed evolution campaigns have 
demonstrated that a catalytic tetrad composed of a nucleophilic lysine 
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Fig. 3 | AME benchmark results. a, EC number distribution of the AME 
benchmark30. b, In silico success rate of RFdiffusion2 and RFdiffusion as a 
function of the discontiguous chain segments containing motif atoms (the 
number of residue islands). While RFdiffusion performs marginally better on 
atomic motifs with one residue island, RFdiffusion2 is able to solve complex 
scaffolding problems with up to seven residue islands. c, In silico success rate 
across each case for RFdiffusion2 and RFdiffusion. RFdiffusion2 samples at least 
one scaffold passing the success filters for 41/41 cases while RFdiffusion achieves 
16/41, and RFdiffusion2 has a higher in silico success rate than RFdiffusion on all 
but one case. Difficulty correlates with more residue islands. d, Left, Distribution 
of TM scores to the closest structure in the PDB for successful in silico designs. 
Most designs have low closest TM scores between 0.5 and 0.6. Right, A 
representative superposition of an RFdiffusion2 design (colored) on the closest 
PDB structure (in gray). e, Comparison of the three approaches for rotamer and 
index selection for representative AME benchmark cases from each of the residue 

island categories—3, 4, 5 and 6. One hundred designs were generated for each 
motif using each approach. Here we display the total in silico success rate over 
all residue island categories, while in Supplementary Table 1 we show the success 
rate per category. ‘Inferred’ indicates that RFdiffusion2 generates the rotamer or 
index during the flow-matching trajectory. ‘Native’ indicates that RFdiffusion2 
is given the native rotamer or index at input. ‘Naive’ indicates that RFdiffusion2, 
as with RFdiffusion, is provided with randomly selected side-chain rotamers and 
residue indices. We find that ‘naive’ results in the worst overall in silico success 
rate—as expected, because RFdiffusion fails in most cases. Using native results 
in more in silico successes, as expected, since the native rotamers and residue 
spacings are the result of evolutionary optimization. The best performance is 
achieved by allowing RFdiffusion2 to infer both rotamers and indices, which 
provides a far larger space to sample over to find optimal solutions than the other 
two approaches.
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enmeshed in a hydrogen-bonding network with two tyrosines and an 
asparagine can stabilize the transition states of this reaction39. We 
constructed a minimal theozyme, comprising the hydrogen bond 
donors and acceptors of this network and the terminal CE and NZ 
atoms of lysine required to position the NZ for nucleophilic attack on 

the reactant, from the crystal structure of one such evolved retroaldo-
lase: RA95.5-8F (PDB 5AN7)39. We generated designs scaffolding this 
theozyme, filtered them and expressed 96 in an in vitro transcription/
translation system. We tested activity of the in vitro transcription/
translation-produced proteins using racemic Methodol as a substrate 
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Fig. 4 | RFdiffusion2 generates active enzymes from minimal chemical 
constraints. Columns from left to right are reaction mechanism hypothesis, a 
theozyme based on this hypothesis input into RFdiffusion2, a resulting design, 
the closest protein in the training set (by Foldseek) and experimental activity. In 
kinetics plots (rightmost column), all points represent mean initial rate values, 
and error bars represent standard errors over three technical replicates.  
a, Designed retroaldolase. From left to right, Retroaldolase reaction mechanism 
uses an activated lysine as a nucleophile; input to RFdiffusion2 (taken from PDB 
5AN7); design from RFdiffusion2; superimposition with closest structure in 
the PDB (6SU3; TM score = 0.47), kinetics assay measuring fluoresence of the 
product (kcat/KM = 6.34 M−1s−1; literature reports Kuncat = 6.5 × 10−9s−1). Measurement 
error bars indicate two measurements made on different days. kcat/KM error bars 
indicate error of fit to Michaelis–Menten equation. b, Designed hydrolase using 
nucleophilic cysteine. From left to right, Reaction mechanism involving a catalytic 
triad with a cysteine and an oxyanion hole to stabilize the transition state; inputs 
to the model derived from PDB 1PPN; design from RFdiffusion2; superimposition 
with closest structure in the PDB (5K7V; TM score = 0.53); kinetics assay 
measuring a fluorescence of the product once hydrolyzed (kcat/KM = 250 M−1s−1, 
Kuncat = 9 × 10−6s−1 shown in Supplementary Fig. 15). c, Designed hydrolase using 
zinc as a Lewis acid and 4MU-butyrate as a reactant. From left to right, Reaction 

mechanism involving an activated water molecule as a nucleophile; DFT 
computed side-chain coordinates that position the zinc and substrate in the 
optimal geometry for the reaction; design from RFdiffusion2; superimposition 
with closest structure in the PDB (2ZTK; TM score = 0.54); kinetics assay 
performed in the same manner as in b (kcat/KM = 77 M−1s−1, Kuncat = 9 × 10−6s−1 shown 
in Supplementary Fig. 15). d, Designed hydrolase using zinc as a Lewis acid 
and 4MU-phenylacetate as a reactant. From left to right, Reaction mechanism 
involving an activated water molecule as a nucleophile; DFT computed side-chain 
coordinates that position the zinc and substrate in the optimal geometry for the 
reaction; design from RFdiffusion2; superimposition with closest structure in the 
PDB (4WIB; TM score = 0.5); kinetics assay performed in the same manner as in b 
and c (kcat/KM = 16, 000 M−1s−1, Kuncat = 2.1 × 10−5s−1 shown in Supplementary Fig. 15). 
e, Designed hydrolase using zinc as a Lewis acid and 4MU-phenylacetate 
as a reactant, and glutatmate as a general base. From left to right, Reaction 
mechanism involving a glutamate activating a water molecule, which will serve as 
a nucleophile; DFT computed side-chain coordinates that position the zinc and 
substrate in the optimal geometry for the reaction; design from RFdiffusion2; 
superimposition with closest structure in the PDB (2EI4; TM score = 0.60); 
kinetics assay performed in the same manner as in b and c (kcat/KM = 53, 000 M−1s−1, 
Kuncat = 2.1 × 10−5s−1 shown in Supplementary Fig. 15).
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and found four variants that show detectable levels of retroaldolase 
activity in our semiquantitative assay40. We purified the most active 
design and found it catalyzed the retroaldolase reaction with kcat/KM 
of 6.34 ± 0.92 M−1s−1 (Fig. 4a).

Esterases catalyzing the cleave of an ester bond by water per-
form many cellular functions41 and have numerous industrial 
applications42,43. As a first route to ester cleavage, we chose a cysteine 
hydrolase theozyme consisting of a Cys-His-Asn catalytic triad in 
which the cysteine performs nucleophilic attack, with the histidine 
acting as a general acid/base activated by the asparagine, and a 
helix-dipole-stabilized oxyanion hole formed by the cysteine backbone 
nitrogen together with a glutamine that stabilizes the negative charge 
of the tetrahedral intermediate formed during nucleophilic addition. 
We take as the minimal catalytic components for this reaction the active 
functional groups of the cysteine, histidine, asparagine and glutamine, 
and 3–4 backbone atoms of the residues abutting the cysteine to force 
the local backbone into a region of Ramachandran space correspond-
ing to the termination of a helix oriented in such a way that its dipole sta-
bilizes the local oxyanion hole. We took the relative positions of these 
atoms from the crystal structure of a papaya cysteine hydrolase (PDB 
1PPN)44, positioned our chosen substrate 4MU-butyrate according to 
the known optimal geometries for nucleophilic attack by the cysteine, 
proton donation by the histidine, and hydrogen bond stabilization of 
the oxyanion45. Among the 48 designs that were screened experimen-
tally, several displayed detectable activity (Supplementary Fig. 12); the 
best design shown exhibited multiple turnover activity with a kcat/KM 
of 248 ± 34 M−1s−1 for the acylation step, better than previous results 
for designed cysteine esterases46 for the same leaving group (Fig. 4b).

Metallohydrolases coordinate metal ions and leverage their 
Lewis acidity to activate water to form a potent nucleophile capable 
of hydrolyzing some of the most stable molecules in biological systems. 
Harnessing this mechanism for arbitrary substrates would enable the 
design of de novo enzymes capable of hydrolyzing environmental pol-
lutants with long half-lives47,48. We used RFdiffusion2 to design metallo-
hydrolases for two substrates (4MU-butyrate and 4MU-phenylacetate) 
as described in detail in the accompanying paper49; here we provide 
a brief summary of the design strategy and experimental results. In 
contrast to the previous case studies in which the theozyme geom-
etry was extracted from native enzymes, to design the theozyme, 
we used DFT to find the geometry of the transition state in which the 
hydroxide ion forms a bond with the carbonyl carbon, simulating the 
Zn(II) metal, metal-coordinating functional groups (imidazole), a 
chosen reactant and a hydroxide ion. We obtained 96 designs for each 
and identified three functional enzymes for the 4MU-butyrate reac-
tion and five for the 4MU-phenylacetate reaction. We found the best 
enzyme for the 4MU-butyrate reactant had a kcat/KM of 77 ± 10 M−1s−1, 
higher than previously designed zinc hydrolases50,51. The best enzyme 
for 4MU-phenylacetate had a kcat/KM of 16,000 ± 2,000 M−1s−1, several 
orders of magnitude higher than previously designed zinc hydrolases. 
In a second set of 96 designs tested including a general base to activate 
the water, we identified 11 functional enzymes, the best of which had a 
kcat/KM of 53,000 ± 5,000 M−1s−1 (Fig. 4c–e). For more details, see ref. 49.

These experimental results demonstrate that RFDiffusion2 is able 
to generate functional enzymes when screening less than 96 designs 
both by scaffolding theozymes from native enzymes and from DFT 
calculations. The most active design for each reaction is structurally 
distinct from all structures in the PDB (Fig. 4; Novelty column).

Discussion
RFdiffusion2 outperforms the prior state of the art methods on in 
silico benchmarks, removes expert intuition necessary with prior 
backbone motif-scaffolding and scaffold library methods, and can 
design enzymes with considerable experimentally confirmed catalytic 
activity. RFdiffusion2 enables direct scaffolding of ideal active sites 
described at the atom level without prespecifying sequence indices 

or enumerating side-chain rotamers. We show on our newly curated 
AME benchmark that RFdiffusion2 substantially improves on RFdif-
fusion over a range of atom-level active site descriptions. Our design 
campaigns for retroaldolases, cysteine hydrolases and zinc hydrolases 
found active and novel enzymes for each reaction. Our in silico success 
in the AME benchmark suggests RFdiffusion2 should be applicable to 
designing enzymes across many more reactions at higher success rates 
than the prior state of the art.

There are several avenues for improvement. Despite RFdiffu-
sion2’s success in obtaining active enzymes across four reactions, 
the enzymes designed by RFdiffusion2 are not as active as native 
enzymes. Our theozymes might not be capturing all the necessary 
interactions for high activity and RFdiffusion2 might be able to sample 
higher-activity enzymes by expanding our theozyme definition to 
include more interactions that are necessary for catalysis13. Automat-
ing the design of enzymes from theozymes opens up the possibility of 
large-scale testing of varied theozymes to broaden our understanding 
of enzymes and validate mechanistic hypotheses of much wider scope 
than those testable with catalytic residue knockout experiments or 
directed evolution. Alternative neural network architectures such 
as Diffusion Transformers52 and modules from AlphaFold3 (ref. 34) 
for all-atom tasks could improve RFdiffusion2, which uses the neural 
network architecture of RFAA. The AME benchmark is limited to scaf-
folding motifs in the PDB derived from annotations of native enzymes 
from M-CSA. Although beyond the scope of our work, extending AME 
to measure success on enzymes with multiple transition states could 
help advance de novo enzyme design. As more successful theozymes 
from DFT are validated, we expect it will become possible to bench-
mark non-PDB motifs in the near future. The rapid development of 
open-source biomolecular interaction structure prediction methods 
such as Chai-1, Boltz-1 (ref. 53), Protenix54 and ESMFold55 could lead to 
improved filtering of successful enzyme designs. Finally, we expect 
that co-designing the protein sequence10 and side chains56–71 outside 
the active site could lead to more favorable pocket interactions with 
the substrate and potentially enable sequence-based guidance based 
on experimental kinetics data.

RFdiffusion2 should be immediately useful to protein designers 
working on design problems requiring atomic-resolution modeling 
such as small-molecule binding and enzyme design. We expect that 
the introduction of RFdiffusion2 and the AME benchmark will open 
up new research efforts in the machine learning community exploring 
the design of new modeling approaches for atomic-resolution protein 
design. To this end, we are making the RFdiffusion2 code freely avail-
able to the research community.
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Methods
A detailed description of the methods is provided in the Supplementary 
Information. A brief summary is provided below. Code to run RFdiffu-
sion2 and reproduce the results of the paper are available on https://
github.com/RosettaCommons/RFdiffusion2/.

Architecture and training
RFdiffusion2 builds on the representation of previous motif-scaffolding 
methods9 by adding (1) a new class of conditioning inputs that are rep-
resented at the atomic level (as opposed to backbone motifs in previ-
ous methods) and (2) a class of motifs for which the residue index is 
not shown. To handle this, atomic and unindexed motifs are provided 
as in-context conditioning to the RF All-Atom network architecture18. 
The network is trained with a flow-matching objective derived in ref. 
24. There are several differences to the original RFdiffusion: (1) RFdif-
fusion2 can handle unindexed and atomic motifs including small mol-
ecules, (2) the network is trained from random initialization instead of 
fine-tuned from structure prediction weights, and (3) the network uses 
a flow-matching objective instead of a diffusion objective resulting in 
more stable training. Further details are provided in the Supplementary 
Methods (section B).

AME benchmark
To our knowledge, a previous benchmark for unindexed atomic motif 
scaffolding has not been constructed. We developed a benchmark 
by taking all enzymes in the M-CSA30, cross-correlating them to 
find structures where all reactants were present using the PARITY 
database31. After applying final quality filters (described in Sup-
plementary Methods), we found 41 cases that satisfy all the criteria. 
For each catalytic residue labeled in the M-CSA, we chose a random 
subgraph of the residue to be the catalytic atoms. It is important 
to note that scaffolding these atoms will not necessarily generate 
catalytically proficient enzymes, but these cases were extremely 
helpful in evaluating the ability of the network to perform unindexed 
atomic motif scaffolding.

RFdiffusion2 is run with all the default configurations, placing the 
origin token at the center of mass of the atomic motif. RFdiffusion1 is 
run as a baseline by randomly sampling indices, using inverse rotamer 
sampling to sample plausible backbone positions for the atomic motif, 
and using a substrate repulsive potential to create a pocket for the 
ligand. For each case, we generated 100 backbones, fit eight sequences 
to them with LigandMPNN32 and then refolded them with Chai-1 (ref. 
33). A successful backbone has at least one sequence where one of 
the five Chai-1 diffusion samples has all the atomic side chains within 
1.5 Å when the backbones of the output generation motif residues are 
aligned to the predicted backbone coordinates and having no ligand 
clashes with backbone atoms in the prediction. Further details are 
provided in the Supplementary Methods (section B).

Experimental characterization of enzymes
The design procedure for all design campaigns was to select an input 
theozyme, generate backbones with RFdiffusion2, assign multiple 
sequences using LigandMPNN, refold with a structure prediction net-
work such as AF2 or Chai-1 and apply problem specific filters to select 
designs to order. Experimental characterization involved obtaining 
synthetic genes for designs, expressing and purifying the proteins 
and measuring initial rates at different concentrations to determine 
Michaelis–Menten kinetics. We describe the specifics of each design 
campaign in the Supplementary Methods. Details of each design cam-
paign and experimental characterization are described in the Supple-
mentary Methods (section D).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
PDB structures used for training and evaluation were obtained from the 
RCSB. Enzyme information and metadata are available in the publicly 
available M-CSA database. Source data are provided with this paper.

Code availability
Code for running RFdiffusion2 is available under the MIT open-source 
license on GitHub via https://github.com/RosettaCommons/
RFdiffusion2/.
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