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Designing new enzymes typically begins with idealized arrangements of
catalytic functional groups around areaction transition state, then attempts
to generate protein structures that precisely position these groups. Current
Al-based methods can create active enzymes but require predefined residue

positions and rely on reverse-building residue backbones from side-chain
placements, which limits design flexibility. Here we show that anew deep
generative model, RoseTTAFold diffusion 2 (RFdiffusion2), overcomes
these constraints by designing enzymes directly from functional group
geometries without specifying residue order or performing inverse rotamer
generation. RFdiffusion2 successfully generates scaffolds for all 41 active
sitesinadiverse benchmark, compared to 16 using previous methods. We
further design enzymes for three distinct catalytic mechanisms and identify
active candidates after experimentally testing fewer than 96 sequencesin
each case. These results highlight the potential of atomic-level generative
modeling to create de novo enzymes directly from reaction mechanisms.

A grand challenge in de novo protein design is the generation of
enzymes that catalyze novel reactions. De novo enzyme design starts
from a detailed description of an active site composition and geom-
etry predicted to catalyze the reaction of interest. This active site
description, called atheozyme, describes placement of protein func-
tional groups around the reaction transition state(s) and any reaction
cofactors"? The de novo enzyme design task is to generate protein
scaffolds thataccommodate such theozymes. Pre-deep learning meth-
ods such as RosettaMatch searched through sets of already existing
native or designed” scaffolds for possible placements of the catalytic
residues. While many enzymes were designed using this approach, it
was restricted to theozyme geometries that could be matched to the
inputscaffold set*. Advancesin deep learning with diffusion models®®
have removed the need for scaffold libraries for many substructure

scaffolding tasks by directly sampling diverse proteins containing
the desired substructure (motif) through atechnique known as motif
scaffolding®?. However, thus far, these methods all operate on a
backbone-level representation of proteins as a series of amino acid
residues and, consequently, can only scaffold motifs represented at
the backbone level.

Current approaches attempt to overcome this limitation for
atom-level active site descriptions by enumerating possible confor-
mations and sequence indices for the catalytic residues and thenin a
separate step using motif scaffolding to generate proteins that scaffold
these backbone positions™*. While active enzymes have been gener-
ated using this approach, it is computationally inefficient and does
notscaleto more complex active sites as the number of combinations
of backbone coordinates to scaffold grows exponentially with the
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number of catalytic residues. A method capable of scaffolding com-
plex theozymes described at the atom level would have widespread
applications for enzyme design and beyond™™".

We reasoned that substantially improved performance on more
complex enzyme active site scaffolding challenges could be achieved
by a generative model capable of selecting the conformations and
sequence indices of the catalytic residues by modeling the full joint
distribution of rotamers, sequence indices and scaffolds conditioned
directly on atom-level active site descriptions. With RFdiffusion2, we
set out to extend RoseTTAFold diffusion All-Atom (RFdiffusionAA)™® to
generate structures conditioned on these minimal active site descrip-
tions (Fig.1).

Atomic motif conditioning

To address this challenge, we sought to generalize motif scaf-
folding beyond sequence indexed, backbone-level motifs. Prior
motif-scaffolding methods represent motifs as ‘backbone frames’,
in which each amino acid’s N, Ca, C backbone atoms are parameter-
ized as an element in SE(3). Each motif frame requires a prespecified
sequenceindex thatindicates the frame’s location along the backbone
chain. In contrast, the protein component of an atom-level active site
description includes only the side-chain functional group atoms, not
thebackbone, of the participating amino acid residues; these residues
canbeanywhere alongthe sequence and hence do not have a specified
index. While the indexed frame representation s sufficient for scaffold-
inglarge contiguous domains that can be accurately described at the
residuelevel, itisinsufficient to express the task of scaffolding discon-
nected groups of atoms belonging to residues of unknown indices.

Our approachis to create an extended representation with dif-
fering levels of resolution and index information that is capable of
expressing more complex motifs. In RFdiffusion2, we use the RoseT-
TAFold All-Atom neural network architecturein whicheachresiduein
the input and output can be represented as a frame or as heavy atom
coordinates (an atomized residue)’®. During training, we represent
someresidues with frames and atomize others. For each atomized resi-
due, the network learns to model the distribution of side-chain poses.
By providing known coordinates for some side-chain atoms, which we
term the atomic motif, the network learns to model the distribution of
proteins conditioned on theinclusion of such atomic substructures. At
inference time, we can then condition on the coordinates of individual
proteinatoms such as the side-chain (or backbone) functional groups
presentinatheozyme, along withanyligand atoms representing transi-
tionstate geometry. This ability to condition onindividual atoms rather
thanentireresidues allows us to forgo inverse rotamer sampling* used
inprevious approaches and instead allow the model to simultaneously
infer an appropriate rotamer and scaffold.

We can further extend the representation to remove the need to
know the sequence indices of a motif to scaffold it. During training,
we select subsets of residues, duplicate them and remove their index
features to create ‘unindexed residues’. Without any auxiliary losses,
the network learns that unindexed residues are always superimposed
onindexedresiduesinunnoised structures. By providing coordinates
for unindexed residues, which we term an ‘unindexed motif’, the net-
work learns to model the distribution of proteins conditioned on the
inclusion of a known substructure at unknown indices. At inference
time, we then have the flexibility to condition on a motif consisting of
residues with known or unknown indices because theozymes do not
prescribe the sequenceindices of their constituent residues. The ability
to condition on motifs without specifying their indices enables us to
forgo naive index sampling used in previous approaches and instead
allow the model to simultaneously infer indices for the motif while
scaffoldingit (Fig. 2b).

The resulting model, RFdiffusion2, can generate proteins condi-
tioned on a broad range of motifs including side-chain motifs, motifs
without known sequence indices and ligand motifs. When training

RFdiffusion and RFDiffusionAA, we found performance started to
worsen over extended periods of training (Supplementary Fig. 1).
Through a combination of auxiliary losses and self-conditioning'?,
these methods were able to achieve high successrates on their respec-
tive tasksin short training sessions. Due to the complexity of the unin-
dexed atomic motif-scaffolding task, we expected that a stable
objective would be required. To this end, we train RFdiffusion2 with
flow matching™, asimpler framework for diffusion models?>* shown
empirically to have improved training and generation efficiency in
other domains?®. Briefly, this framework interpolates a training exam-
ple toward a noise sample and trains a neural network to denoise by
predicting the original, uncorrupted example. If trained to denoise
with sufficient accuracy, the model can sample from the data distribu-
tionby iteratively denoising a sample drawn from the noise prior. Our
representation of the datadistribution contains both atoms and back-
bone frames that are elements of R? and SE(3), respectively. Flow
matching on R3follows its original derivation using Gaussian probabil-
ity paths, while for SE(3) we follow the formulation in FrameFlow?**
that utilizes Riemannian flow matching® and removes approximations
for rotational losses present in the RFdiffusion’. With these improve-
ments, RFdiffusion2 trained stably from randomly initialized neural
network weights, and does not require auxiliary losses or use
self-conditioning. Decoupling RFdiffusion2 from structure prediction
removes constraints around the neural network architecture and ena-
bles new generative modeling tasks.

Our training dataset consists of biomolecular structures
from the Protein Data Bank (PDB)* that include proteins, protein-
small-molecule complexes, protein-metal complexes and covalently
modified proteins, filtering out common solvents and crystallization
additives™. Each structure undergoes a motif extraction procedure
to construct a motif-scaffolding training example. First, we select a
random subset of residues to be the motif. Motif residues are chosen
uniformly at random to ensure RFdiffusion2 sees a diverse range of
interatomic geometries in the motif. Second, each motif residue is
represented as either aframe or an atomized residue. Ifamotif residue
is atomized, only a random subgraph of the amino acid heavy atoms
are provided as the motif. Third, we decide whether the motif will be
featurized as indexed or unindexed. Lastly, for any ligand present, we
sample arandom connected subgraph of its heavy atoms to be pro-
vided asamotif with relative accessible surface area (RASA)*** labels
for each atomin the ligand intermittently provided. We resample the
motif on each training step as a form of data augmentation to ensure
that the same noised structureis not always shown alongside the same
motif. We train the final model for 17 days using 24 A100 Nvidia GPUs.

In our early experiments with flow matching, we found that the
choice of how the ground-truth structures were centered relative to
the origin in training substantially affected the quality of inference
outputs. A natural strategy is to globally center each ground-truth
structure; however, this leaks the offset between the scaffold center
of mass and the motif. At inference time, this strategy requires the
exact specification of the desired offset, whichis usually not known. A
common fix for this pathology in motif-scaffolding diffusion models
is to center ground-truth structures on the motif, allowing the model
to determine the offset between the scaffold center of mass and the
motif'>**, However even when the motif is centered, due to the inter-
polation scheme used in flow matching, the model is able to exactly
determine this offset from any partially noised structure. The resultant
behavioristhatinthefirstdenoising step,in which the network receives
pure noise, it predicts an offset that it does not learn to refine in sub-
sequent denoising steps. We instead introduce ‘stochastic centering’,
whichfirst centers the ground-truth structure and adds asmall global
translation sampled from a three-dimensional Gaussian such that the
noised input structures only encode an approximate offset between
the motifand scaffold. This enables the model to refine the placement
ofthe motif within the overall structure over the course of theinference
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Fig. 1| RFdiffusion2 overview. a, De novo enzyme design starts froma the unindexed residue’s Ca occupies the same location as the Ca of the protein
configuration of catalytic groups around the reaction transition state(s) backbonein Euclidean space. ¢, The design pipeline starts from the input
(atheozyme) generated using quantum chemistry, protein structural analysis theozyme, followed by RFdiffusion2 to generate the structure, and LigandMPNN
and/or chemical reasoning. b, RFdiffusion2 generates protein structures that to generate amino acid sequences that encode the structure and stabilize the
support the theozyme.Inrow1, the backbone trajectory shows the amino acid transition state. Designs are evaluated by all-atom structure prediction (for
residue frames (pastel) as they transform from a sample drawn from the noise example, using Chai-1and AF3) and are considered aninsilico success if the
distributioninto a protein backbone. Row 2—a zoom-in of row 1-shows the design (pastel) and prediction (light gray) align to a sufficient degree. Two
non-motif side-chain atoms (slate gray) connecting the atomic motif (teal) with representative examples of consistency between design model and predicted
the protein backbone. At ¢ = 1the intra-residue bonds are shown for the atomized structure at the level we take to constitute a success are shown in the right panels.
residues. Right, The distances between the Ca coordinates of the unindexed, The two cases pictured are the creatinase and taurine dioxygenase motifs from
atomized residues and the backbone residues they superimpose at ¢ = 1. Over the AME benchmark described in ‘AME benchmark’ in the Results (AME IDs:

the course of the trajectory, the model matches these unindexed residues to MO0096_1chm AND M0129 _10s7).
indexed residues of the protein backbone, such that by the end of the trajectory

trajectory. At inference time, users supply a prior belief about the orientationrelative to the protein core (Fig.2d). Forexample, givenan
placement of the motif through aspecial ORI pseudo-atomthatspeci-  elongated small-molecule or transition state with one end quite polar or
fies the approximate center of mass of the generated structure. This  charged, placement of the ORI token adjacent to the opposite end (or
enables enzyme designers to control the active site and transitionstate  displaced from this end along a vector running through the long axis
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ofthemolecule) results in a designed binder or enzyme with abinding
pocket extending radially from the center of the protein with the polar/
charged end of the small molecule exposed to solvent.

RFdiffusion2 provides two additional conditioning capabilities of
the ligand that are useful in de novo enzyme design. First, to provide
finer control over the depth at which each reactant and/or cofactor is
buried within the protein, we enable users to specify the RASA of each
atom. By providing the RASA of each ligand atom 50% of the time dur-
ing training, RFdiffusion2 learns to generate structures that respect
those atom-wise conditions atinference time when provided (Fig. 2c).
Second, the user may know the ligand atoms of a transition state but
may not know the full ligand conformer. We allow the user to specify
‘partialligands’ where only the known ligand atoms are provided while
RFdiffusion2 infers the rest of the ligand conformer. Analysis of the
physical plausibility of the generated conformers shows they match
closely with RDkit-generated conformers (Supplementary Fig. 3).
We find RFdiffusion2 can, given partial ligand coordinates, sample
physically realistic conformers for the entire ligand (Fig. 2d), remov-
ing the need to prespecify the complete ligand conformer with an
external tool. Together, the conditioning capabilities open up greater
control over the geometric properties of the protein-ligand complex
duringinference.

Results

AME benchmark

Anin silico enzyme motif-scaffolding benchmark was introduced in
RFdiffusion®” which contained one active site from each of the five
most represented Enzyme Commission (EC) classesinthe Mechanism
and Catalytic Site Atlas (M-CSA)*°. We find that this benchmark does
notaccurately reflect the challenges of de novo enzyme design due to
its use of indexed backbone motifs, lack of ligands and lack of active
site diversity with only five enzyme cases. To evaluate RFdiffusion2,
we developed anewbenchmark thatbetter reflects the theozyme scaf-
folding problem of de novo enzyme design.

We cross-referenced the 958 hand-curated catalytic active sites
downloaded from the M-CSA with the Proportion of Atoms Residing
In Identical Topology (PARITY)* dataset and selected reactions with
PDB crystal structures where all reactants and cofactors were pre-
sent. After curation, we found 41 active sites spanning a diverse set of
reactionsin EC* classes 1-5 (Fig. 3a; EC classes 1-5 account for 96% of
examplesin M-CSA). The annotations inM-CSA are at the residue level,
so we extracted random connected sets of atoms from each catalytic
residue to treat as the protein component of the theozyme for each
benchmark case (Fig. 3b).

We evaluate RFdiffusion and RFdiffusion2 by sampling 100 struc-
tures for each benchmark case with the atomic motif as conditioning
information. We assign eight sequences to each structure with Ligan-
dMPNN®, conditioned on the backbone, catalytic residue side-chain
and ligand coordinates. To evaluate whether the sequences fold to
theintended structures, we use Chai-1(ref.33), an open-sourceimple-
mentation of AlphaFold3 (ref. 34), for structure prediction rather than
AlphaFold2 (ref. 35) because we find that Chai-1's side-chain interac-
tion distances more closely align with the reference distribution of
native side chains (Supplementary Fig. 2). We call a design an in silico
success if (1) the root mean square deviation of all the heavy atoms in
the catalytic residues is <1.5 A when aligned on the backbone N, Ca, C
of those catalytic residues in a Chai-1prediction for at least one of the
LigandMPNN sequences, and (2) the design contains no clashes with
theligand where a clashis defined as two atoms being within 1.5 A. We
release this benchmark that we call atomic motif enzyme (AME) for
the scientific community.

To our knowledge, RFdiffusion is the only deep learning method
that has been shown to successfully design de novo enzymes'**®. We
compare RFdiffusion2 to RFdiffusion by establishing a pipeline that
processes eachatomic motifinto asuitable input for RFdiffusion. The
pipeline samples inverse rotamers and residue indices for the atomic
motifto transformitinto anindexed, backbone motif,and replaces the
ligand with an attractive-repulsive potential. RFdiffusion2 generates
enzymes conditioned directly on the theozyme without additional
processing (Fig. 2a).

We find that RFdiffusion2 finds solutions to all 41benchmark cases
while RFdiffusion finds solutions for only 16/41 cases. In40/41 cases, we
find that RFdiffusion2 substantially outperforms RFdiffusion, setting
anewstate of theart for theozyme scaffolding (Fig. 3c). We find the dif-
ficulty of abenchmark case correlates with the complexity of the motif,
which we quantify with the number of ‘residue islands’, the number of
contiguous segments of catalytic residues in the original PDB structure.
Theinsilico successes from RFdiffusion2 are quite different from any
protein in the training set as measured by FoldSeek® and template
modeling (TM) score’ (Fig. 3d). Although the motif examples in AME
come from the PDB, RFdiffusion2 is able to find completely new scaf-
folds that house these motifs.

We sought to understand the relative contribution of atomic motif
and unindexed motif scaffolding to the improved in silico success
rates of RFdiffusion2. To resolve the rotamers of the atomic motif, we
compare three approaches: naive inverse rotamer sampling as done
with RFdiffusion, inferring the rotamer with RFdiffusion2, and the
reference case of using the rotamer presentin the native structure. For

Fig. 2| Motif scaffolding with RFdiffusion2. a, In the original RFdiffusion, two
preprocessing steps are required to transform an unindexed atomic motifinto
asuitable input. These steps—inverse rotamer sampling and sequence index
sampling—both require selecting from an exponentially large search spaces

of L1/(L — M)! and Mno-ofpessiblerotamerstates) ragpactively, where L is the number

of residues, while Mis the number of residues that are needed for the active

site. RFdiffusion2 does not require such preprocessing steps and can scaffold
unindexed atomic motifs directly. b, RFdiffusion2 can be conditioned on

motifs in different representations. Three versions of the same motif (M0904;
PDB 1QGX) from AME are shown on the leftmost column, different backbone
samples in the middle columns, and the resulting diversity of sequence indices
and rotamers on the rightmost columns. (i) The backbone motifincludesa
prespecified rotamer and index as required by RFdiffusion. (ii) The atomic motif
has prespecified sequence indices but unspecified side-chain conformation.
(iii) Only unindexed atom positions are provided, not the residue indices or
side-chain rotamer conformations. The rotamer and sequence indices are
sampled during the RFdiffusion2 trajectories, increasing the diversity of possible
solutions to the motif-scaffolding problem. ¢, Each ligand atom can be labeled
withaRASA category to control how solvent exposed the ligand is. The example
RASA conditions are in the left column, abackbone sample with the ligand in

the middle, and the distribution of ligand atom RASA from 100 designs with
the RASA condition. When all atoms are labeled as exposed, the ligand RASA

is concentrated around 1.0 and the backbone does not come into contact with
theligand. Conversely, when all atoms are labeled as buried, the ligand RASA
isconcentrated around O; the sample shows the backbone almost completely
covering the ligand. Labeling half the ligand as exposed and the other half as
buried leads to RFdiffusion2 generating backbones that only bind to the buried
side of theligand. d, RFdiffusion2 can be provided with an OrI token that
specifies the desired center of mass (CoM) of the scaffold with respect to the
ligand. Two different ORI positions are shown in the left column. The middle
column shows samples with scaffolds centered at the indicated ORI token
positions. The distribution of CoMs from 100 sampled designs with the ORI token
show that the scaffolds generally follow the orI condition of where to place
the scaffold. e, RFdiffusion2 can be provided with partial ligand input in which
case it must sample the remaining ligand degrees of freedom while generating
the protein. The left column shows the partial ligand input. The middle column
showsin gray a conformer along with the protein generated by RFdiffusion2.
Finally, the right column shows the distribution of ten generated conformers.
In Supplementary Fig. 3, we analyze the physical plausibility of the generated
conformers.
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specifying the index of the atomic motif, we compare combinatorial
index sampling prior to generative modeling, as done in RFdiffusion,
RFdiffusion2inference of the index, and the reference case of using the
index presentin the native structure. We evaluated every combination
ofthe settings over four casesinthe AME benchmark where each case
israndomly chosen from 3,4, 5and 6 residue islands. We find the best
strategy is to infer both the rotamer and sequence indices—even sur-
passing using the native rotamer and sequence indices, which would
notbe available when designing enzymes for novel reactions (Fig. 3e).
At four residue islands, we find the naive sampling strategy in RFdif-
fusion failsto achieve any insilico successes (Supplementary Table1).

a Input Sample rotamers
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We analyzed the diversity of the residues surrounding the motif and
found the greatest structural diversity with the unindexed atomic
motif strategy, followed by atomic motifand, lastly, backbone motifs
with the lowest diversity (Supplementary Fig. 4). Our results show a
deeplearning approach to resolve the additional degrees of freedom
represented by the rotamers and sequence indices is more effective
than fixing these to specific values or pre-enumeration.
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Fig. 3| AMEbenchmark results. a, EC number distribution of the AME
benchmark™. b, Insilico success rate of RFdiffusion2 and RFdiffusionas a
function of the discontiguous chain segments containing motif atoms (the
number of residue islands). While RFdiffusion performs marginally better on
atomic motifs with one residue island, RFdiffusion2 is able to solve complex
scaffolding problems with up to seven residue islands. ¢, In silico success rate
across each case for RFdiffusion2 and RFdiffusion. RFdiffusion2 samples at least
one scaffold passing the success filters for 41/41 cases while RFdiffusion achieves
16/41, and RFdiffusion2 has a higher in silico success rate than RFdiffusion on all
but one case. Difficulty correlates with more residue islands. d, Left, Distribution
of TM scores to the closest structure in the PDB for successful in silico designs.
Most designs have low closest TM scores between 0.5 and 0.6. Right, A
representative superposition of an RFdiffusion2 design (colored) on the closest
PDB structure (in gray). e, Comparison of the three approaches for rotamer and
index selection for representative AME benchmark cases from each of the residue

Closest PDB: 50ey_B
0.42T™M

Native Inferred

Index selection

Native

island categories—3, 4, 5and 6. One hundred designs were generated for each
motif using each approach. Here we display the total in silico success rate over
allresidueisland categories, while in Supplementary Table 1 we show the success
rate per category. ‘Inferred’ indicates that RFdiffusion2 generates the rotamer or
index during the flow-matching trajectory. ‘Native’ indicates that RFdiffusion2

is given the native rotamer or index at input. ‘Naive’ indicates that RFdiffusion2,
as with RFdiffusion, is provided with randomly selected side-chain rotamers and
residue indices. We find that ‘naive’ results in the worst overall in silico success
rate—as expected, because RFdiffusion fails in most cases. Using native results
inmoreinsilico successes, as expected, since the native rotamers and residue
spacings are the result of evolutionary optimization. The best performance is
achieved by allowing RFdiffusion2 to infer both rotamers and indices, which
provides a far larger space to sample over to find optimal solutions than the other
two approaches.

theozymes from enzyme crystal structures to decouple the problem
of theozyme design from theozyme scaffolding and directly assess
the model’s capability on the latter. For another three reactions, we
assessed whether it was possible to design a functional enzyme start-
ing from only a desired catalytic mechanism, that is, without a priori
knowledge of a functional theozyme geometry. For these cases, we
perform optimization with density functional theory (DFT) to find
the saddle points of the energy landscape corresponding to transition
state geometries of each case. In all five cases, we generate structures
with RFdiffusion2 from the input theozyme, fit sequences to those

structures, and filter them with structure prediction models to select
designs for experimental validation. In all cases, we found functional
enzymes when testing less than 96 designed proteins. The specifics of
theozyme preparation and experimental characterization for these
four reactions are described below.

The aldol reaction forms carbon-carbon bonds between two
carbonyl reactants. Enzymatic catalysis of this reaction allows for
regiochemical and stereochemical control that would be impossi-
ble with nonbiological catalysts. Directed evolution campaigns have
demonstrated thata catalytic tetrad composed of anucleophiliclysine

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02975-x

a Reaction Input Design
diagram P 9
OH. @ %ﬁ
_ NH HO N gl g
N T A
N o v
L g /O,H
o /\/&
S R
° ®
= - Retroaldolase
=
w
E
w
o p
o )
}};

(] a 5
e
HNy OH O-g ¢
Zn(ll) A
- [ ) SR
V4 Q C{:’/‘ 4
H i ol ;’ ¢
Zinc hydrolase
[Reactant: 4MU-butyrate]
H o
: B
Ve F ¢ 7
Ny N OH O-g ~
Zn(ll) a
[ —
L > M -
a H \1 q &
0 ~
Zinc hydrolase
[Reactant: 4MU-phenylacetate]
Campaign detailed in Kim et al. (2024)
e
I Ph,
H N
A
Ne N OH, O-R
Zn(ll) ©
~N N )
iy N E J
H P NN

Zinc hydrolase
[Reactant: 4MU-phenylacetate]
Campaign detailed in Kim et al. (2024)
Fig. 4| RFdiffusion2 generates active enzymes from minimal chemical
constraints. Columns from left to right are reaction mechanism hypothesis, a
theozyme based on this hypothesis input into RFdiffusion2, a resulting design,
the closest proteinin the training set (by Foldseek) and experimental activity. In
kinetics plots (rightmost column), all points represent mean initial rate values,
and error bars represent standard errors over three technical replicates.
a, Designed retroaldolase. From left to right, Retroaldolase reaction mechanism
uses an activated lysine as a nucleophile; input to RFdiffusion2 (taken from PDB
5AN7); design from RFdiffusion2; superimposition with closest structure in
the PDB (6SU3; TM score = 0.47), kinetics assay measuring fluoresence of the
product (k.,/Ky,= 6.34 M's™; literature reports K, = 6.5 x 10 s '), Measurement
error barsindicate two measurements made on different days. k,/K,,error bars
indicate error of fit to Michaelis-Menten equation. b, Designed hydrolase using
nucleophilic cysteine. From left to right, Reaction mechanism involving a catalytic
triad witha cysteine and an oxyanion hole to stabilize the transition state; inputs
to the model derived from PDB 1PPN; design from RFdiffusion2; superimposition
with closest structure inthe PDB (5K7V; TM score = 0.53); kinetics assay
measuring a fluorescence of the product once hydrolyzed (k.,/K,, =250 M's?,
Kyncar = 9 X 107°s'shown in Supplementary Fig. 15). ¢, Designed hydrolase using
zincas a Lewis acid and 4MU-butyrate as areactant. From left to right, Reaction
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mechanisminvolving an activated water molecule as a nucleophile; DFT
computed side-chain coordinates that position the zinc and substrate in the
optimal geometry for the reaction; design from RFdiffusion2; superimposition
with closest structure in the PDB (2ZTK; TM score = 0.54); kinetics assay
performedinthe same mannerasinb (k.,/Ky,=77 M's™, K e = 9 X 10 °s  shown
inSupplementary Fig. 15). d, Designed hydrolase using zinc as a Lewis acid

and 4MU-phenylacetate as a reactant. From left to right, Reaction mechanism
involving an activated water molecule as a nucleophile; DFT computed side-chain
coordinates that position the zinc and substrate in the optimal geometry for the
reaction; design from RFdiffusion2; superimposition with closest structure in the
PDB (4WIB; TM score = 0.5); kinetics assay performed in the same mannerasinb
and ¢ (k,/Ky,=16,000 M's™, K,,..... = 2.1 x 10~s ' shown in Supplementary Fig. 15).
e, Designed hydrolase using zinc as a Lewis acid and 4MU-phenylacetate
asareactant, and glutatmate as a general base. From left to right, Reaction
mechanism involving a glutamate activating a water molecule, which will serve as
anucleophile; DFT computed side-chain coordinates that position the zincand
substrate in the optimal geometry for the reaction; design from RFdiffusion2;
superimposition with closest structure in the PDB (2E14; TM score = 0.60);
kinetics assay performed in the same manner asinband c (k.,,/K,,= 53,000 M's™,
Kyneae = 2.1x107°s ' shown in Supplementary Fig. 15).

enmeshed in a hydrogen-bonding network with two tyrosines and an
asparagine can stabilize the transition states of this reaction®. We
constructed a minimal theozyme, comprising the hydrogen bond
donors and acceptors of this network and the terminal CE and NZ
atoms of lysine required to position the NZ for nucleophilic attack on

thereactant, fromthe crystal structure of one such evolved retroaldo-
lase: RA95.5-8F (PDB 5AN7)*. We generated designs scaffolding this
theozyme, filtered them and expressed 96 inaninvitro transcription/
translation system. We tested activity of the in vitro transcription/
translation-produced proteins using racemic Methodol as asubstrate
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and found four variants that show detectable levels of retroaldolase
activity in our semiquantitative assay*’. We purified the most active
design and found it catalyzed the retroaldolase reaction with k_,./K),
of 6.34 £ 0.92 M's™ (Fig. 4a).

Esterases catalyzing the cleave of an ester bond by water per-
form many cellular functions* and have numerous industrial
applications*>*, As afirst route to ester cleavage, we chose a cysteine
hydrolase theozyme consisting of a Cys-His-Asn catalytic triad in
which the cysteine performs nucleophilic attack, with the histidine
acting as a general acid/base activated by the asparagine, and a
helix-dipole-stabilized oxyanion hole formed by the cysteine backbone
nitrogen together with aglutamine that stabilizes the negative charge
ofthe tetrahedral intermediate formed during nucleophilic addition.
We take as the minimal catalytic components for this reaction the active
functional groups of the cysteine, histidine, asparagine and glutamine,
and3-4 backbone atoms of the residues abutting the cysteine to force
thelocalbackboneinto aregion of Ramachandranspace correspond-
ingtotheterminationofahelix orientedin such away thatits dipole sta-
bilizes the local oxyanion hole. We took the relative positions of these
atoms from the crystal structure of a papaya cysteine hydrolase (PDB
1PPN)*, positioned our chosen substrate 4MU-butyrate according to
the known optimal geometries for nucleophilic attack by the cysteine,
proton donation by the histidine, and hydrogen bond stabilization of
the oxyanion*’. Among the 48 designs that were screened experimen-
tally, several displayed detectable activity (Supplementary Fig.12); the
best design shown exhibited multiple turnover activity with a k.,/K),
of 248 + 34 M7's! for the acylation step, better than previous results
fordesigned cysteine esterases* for the same leaving group (Fig. 4b).

Metallohydrolases coordinate metal ions and leverage their
Lewis acidity to activate water to form a potent nucleophile capable
of hydrolyzing some of the most stable molecules in biological systems.
Harnessing this mechanism for arbitrary substrates would enable the
design of de novo enzymes capable of hydrolyzing environmental pol-
lutants with long half-lives***, We used RFdiffusion2 to design metallo-
hydrolases for two substrates (4MU-butyrate and 4MU-phenylacetate)
as described in detail in the accompanying paper*’; here we provide
a brief summary of the design strategy and experimental results. In
contrast to the previous case studies in which the theozyme geom-
etry was extracted from native enzymes, to design the theozyme,
we used DFT to find the geometry of the transition state in which the
hydroxide ion forms abond with the carbonyl carbon, simulating the
Zn(Il) metal, metal-coordinating functional groups (imidazole), a
chosenreactantand a hydroxide ion. We obtained 96 designs for each
and identified three functional enzymes for the 4MU-butyrate reac-
tion and five for the 4MU-phenylacetate reaction. We found the best
enzyme for the 4MU-butyrate reactant had a k_,,/K,,0f 77 + 10 M7's ™,
higher than previously designed zinc hydrolases®**'. The best enzyme
for 4MU-phenylacetate had a k_,/K,,0f 16,000 + 2,000 M's, several
orders of magnitude higher than previously designed zinc hydrolases.
Inasecond set of 96 designs tested including ageneral base to activate
the water, we identified 11 functional enzymes, the best of which had a
k.../Ky,0f53,000 + 5,000 M7's™ (Fig. 4c—e). For more details, see ref. 49.

These experimental results demonstrate that RFDiffusion2is able
to generate functional enzymes when screening less than 96 designs
both by scaffolding theozymes from native enzymes and from DFT
calculations. The most active design for each reaction is structurally
distinct fromall structures in the PDB (Fig. 4; Novelty column).

Discussion

RFdiffusion2 outperforms the prior state of the art methods onin
silico benchmarks, removes expert intuition necessary with prior
backbone motif-scaffolding and scaffold library methods, and can
design enzymes with considerable experimentally confirmed catalytic
activity. RFdiffusion2 enables direct scaffolding of ideal active sites
described at the atom level without prespecifying sequence indices

or enumerating side-chain rotamers. We show on our newly curated
AME benchmark that RFdiffusion2 substantially improves on RFdif-
fusion over a range of atom-level active site descriptions. Our design
campaigns for retroaldolases, cysteine hydrolases and zinc hydrolases
found active and novel enzymes for each reaction. Ourinsilico success
in the AME benchmark suggests RFdiffusion2 should be applicable to
designing enzymes across many more reactions at higher success rates
thanthe prior state of the art.

There are several avenues for improvement. Despite RFdiffu-
sion2’s success in obtaining active enzymes across four reactions,
the enzymes designed by RFdiffusion2 are not as active as native
enzymes. Our theozymes might not be capturing all the necessary
interactions for high activity and RFdiffusion2 might be able to sample
higher-activity enzymes by expanding our theozyme definition to
include more interactions that are necessary for catalysis”. Automat-
ing the design of enzymes from theozymes opens up the possibility of
large-scale testing of varied theozymes to broaden our understanding
of enzymes and validate mechanistic hypotheses of much wider scope
than those testable with catalytic residue knockout experiments or
directed evolution. Alternative neural network architectures such
as Diffusion Transformers® and modules from AlphaFold3 (ref. 34)
for all-atom tasks could improve RFdiffusion2, which uses the neural
network architecture of RFAA. The AME benchmarkis limited to scaf-
folding motifsin the PDB derived from annotations of native enzymes
from M-CSA. Although beyond the scope of our work, extending AME
to measure success on enzymes with multiple transition states could
help advance de novo enzyme design. As more successful theozymes
from DFT are validated, we expect it will become possible to bench-
mark non-PDB motifs in the near future. The rapid development of
open-source biomolecular interaction structure prediction methods
such as Chai-1, Boltz-1(ref. 53), Protenix** and ESMFold* could lead to
improved filtering of successful enzyme designs. Finally, we expect
that co-designing the protein sequence’® and side chains** " outside
the active site could lead to more favorable pocket interactions with
the substrate and potentially enable sequence-based guidance based
on experimental kinetics data.

RFdiffusion2 should be immediately useful to protein designers
working on design problems requiring atomic-resolution modeling
such as small-molecule binding and enzyme design. We expect that
the introduction of RFdiffusion2 and the AME benchmark will open
up new research effortsin the machine learning community exploring
the design of new modeling approaches for atomic-resolution protein
design. To this end, we are making the RFdiffusion2 code freely avail-
able to the research community.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
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Methods

Adetailed description of the methodsis providedin the Supplementary
Information. A brief summary is provided below. Code to run RFdiffu-
sion2 and reproduce the results of the paper are available on https://
github.com/RosettaCommons/RFdiffusion2/.

Architecture and training

RFdiffusion2builds on the representation of previous motif-scaffolding
methods’ by adding (1) a new class of conditioning inputs that are rep-
resented at the atomic level (as opposed to backbone motifs in previ-
ous methods) and (2) a class of motifs for which the residue index is
not shown. To handle this, atomic and unindexed motifs are provided
as in-context conditioning to the RF All-Atom network architecture'®.
The network is trained with a flow-matching objective derived in ref.
24. There are several differences to the original RFdiffusion: (1) RFdif-
fusion2 can handle unindexed and atomic motifs including small mol-
ecules, (2) the network is trained from random initialization instead of
fine-tuned from structure prediction weights, and (3) the network uses
a flow-matching objective instead of a diffusion objective resulting in
morestable training. Further details are provided in the Supplementary
Methods (section B).

AME benchmark

To our knowledge, a previous benchmark for unindexed atomic motif
scaffolding has not been constructed. We developed a benchmark
by taking all enzymes in the M-CSA*°, cross-correlating them to
find structures where all reactants were present using the PARITY
database®. After applying final quality filters (described in Sup-
plementary Methods), we found 41 cases that satisfy all the criteria.
For each catalytic residue labeled in the M-CSA, we chose arandom
subgraph of the residue to be the catalytic atoms. It is important
to note that scaffolding these atoms will not necessarily generate
catalytically proficient enzymes, but these cases were extremely
helpful inevaluating the ability of the network to perform unindexed
atomic motif scaffolding.

RFdiffusion2isrun with all the default configurations, placing the
origin token at the center of mass of the atomic motif. RFdiffusionl is
runasabaseline by randomly samplingindices, using inverse rotamer
sampling to sample plausible backbone positions for the atomic motif,
and using a substrate repulsive potential to create a pocket for the
ligand. For each case, we generated 100 backbones, fit eight sequences
to them with LigandMPNN* and then refolded them with Chai-1 (ref.
33). A successful backbone has at least one sequence where one of
the five Chai-1 diffusion samples has all the atomic side chains within
1.5 Awhenthe backbones of the output generation motif residues are
aligned to the predicted backbone coordinates and having no ligand
clashes with backbone atoms in the prediction. Further details are
provided in the Supplementary Methods (section B).

Experimental characterization of enzymes

The design procedure for all design campaigns was to select an input
theozyme, generate backbones with RFdiffusion2, assign multiple
sequences using LigandMPNN, refold with a structure prediction net-
work such as AF2 or Chai-1and apply problem specific filters to select
designs to order. Experimental characterization involved obtaining
synthetic genes for designs, expressing and purifying the proteins
and measuring initial rates at different concentrations to determine
Michaelis—-Menten kinetics. We describe the specifics of each design
campaignin the Supplementary Methods. Details of each design cam-
paignand experimental characterization are described inthe Supple-
mentary Methods (section D).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

PDB structures used for training and evaluation were obtained from the
RCSB. Enzyme information and metadataare available in the publicly
available M-CSA database. Source data are provided with this paper.

Code availability

Code for running RFdiffusion2is available under the MIT open-source
license on GitHub via https://github.com/RosettaCommons/
RFdiffusion2/.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Software and code

Policy information about availability of computer code

Data collection  RFdiffusion2 was developed with Pytorch 2.4.0 (https://pytorch.org/get-started/locally/), CUDA 12.4 (https://developer.nvidia.com/
cuda-12-4-0-download-archive), LigandMPNN (https://github.com/dauparas/LigandMPNN), Chai-1 (https://github.com/chaidiscovery/chai-
lab), TMalign (https://zhanggroup.org/TM-align/). The source code for RFdiffusion2 is available on github https://github.com/
RosettaCommons/RFdiffusion?2.

Data analysis Matplotlib 3.9.2, Pandas 1.5.0, PyMOL 2.5.0, Numpy 1.26.4.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data are freely available from public sources. PDB structures are downloaded from RCSB (https://www.rcsb.org/downloads). Enzyme information is downloaded
from M-CSA (https://www.ebi.ac.uk/thornton-srv/m-csa/).
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