We are designing a new world of proteins to address 21st century challenges in medicine, energy, and technology.

 

 

 

 

 

Latest

Our Mission & Goals

Natural proteins evolved over millions of years to solve the most complex challenges on Earth. However, we face new and pressing challenges today.

The goal of the Institute for Protein Design is to develop and apply methods for designing a whole new world of synthetic proteins to address these challenges.

To achieve this, we are marshalling deep institutional strengths in our faculty, scientific staff, postdoctoral fellows and graduate students, our partners from collaborating institutions, innovator networks and from the computer and biotechnology industries — bringing extraordinary expertise to bear on a singular focus to advance the potential of protein design.


What is protein design?

Proteins are the molecular machines that make all living things hum — they stop deadly infections, heal cells and capture energy from the sun. Yet because our basic understanding of how proteins work has until now remained a mystery, humans have only been able to harness the power of proteins by modifying ones we happen to find in nature.

Enabled by decades of basic research, the rise of inexpensive computing, and the genomics revolution in reading and writing DNA, we can now design new proteins from scratch with specific functions.

Our scientists have developed catalysts for chemical reactions, HIV and RSV vaccine candidates, and experimental therapies for diseases such as cancer and the flu.

Research Areas

Protein Therapeutics
Computer-generated molecules that block infection, capture toxins, reprogram cells, and more.

Next-Generation Vaccines
Highly stable and customizable vaccines for influenza, HIV, cancer, and beyond.

Advanced Drug Delivery
Nanoscale protein assemblies that move therapeutics and more to specific cells within the body.

Algorithm Development
Biomolecular modeling and computational design are at the heart of everything we do.

Biological Devices
Programmable switches, sensors and machines that function inside cells.

Self-Assembling Nanomaterials
Atomically precise materials with applications in solar energy, imaging and basic research.

Bioactive Peptides
Chemically synthesized molecules with predictable structures and functions.

 

 

 

We are headquartered in the Molecular & Nanoengineering and Sciences Buildings at the University of Washington in Seattle.

 

 

 

 Research Spotlight

Fluorescent proteins from scratch

A paper recently published in Nature titled “De novo design of a fluorescence-activating β-barrel” describes our most lustrous synthetic protein yet. The lead authors are Jiayi Dou and Anastassia Vorobieva.

Read more…

Beyond the Institute

From Research Into Company

PvP Biologics is a spin-out from IPD, and although a young company, they’ve already announced a $35M agreement with Takeda. Their enzyme, KumaMax, looks to help those with Celiac disease. Keep an eye on them as they continue their research!

Read more…

GET INVOLVED

Citizen Scientists

We know that computers are smart, but they can sometimes miss important things because of the way they are programmed. The same goes for researchers! This is where Foldit comes in: everyday people can play and help us discover better protein designs through their unique creativity and ingenuity.

Get started!