-
Institute for Protein Design Infograph
[soliloquy id=”345″]
-
High-Resolution Comparative Modeling with RosettaCM
Researchers in the Baker group describe an improved method for comparative modeling, RosettaCM, which optimizes a physically realistic all-atom energy function over the conformational space defined by homologous structures. Learn more at this link.
-
Computational Design Of A Protein That Binds Polar Surfaces
In a Journal of Molecular Biology publication entitled Computational design of a protein-based enzyme inhibitor, Dr. Erik Procko and collaborators describe the computational design of a protein-based enzyme inhibitor that binds the polar active site of hen egg lysosome (HEL). Computational design of a protein that binds polar surfaces has not been previously accomplished. Learn…
-
Rosetta Designed Protein (Toca 511), Now Offering Hope to Brain Cancer Patients
Brain cancer is a serious unmet medical challenge, and Washington state is one of the leading research clusters working on glioblastoma. Here we report on how RosettaDesign proteins are being used to treat brain cancer! Read more about this important translational protein design effort here.
-
Life Sciences Discovery Fund Awards $1.4M to the Institute for Protein Design
The Life Sciences Discovery Fund (LSDF) today announced its latest round of Opportunity Grants, and awarded $1.4 M to the University of Washington (UW) to “Launch of the Institute for Protein Design for Creating New Therapeutics, Vaccines and Diagnostics.” This LSDF Opportunity Grant Award will enable the IPD Translational Investigators to improve upon protein design discoveries so that they…
-
One Small Molecule Binding Protein, One Giant Leap for Protein Design
Reported on-line in Nature (Sept. 4, 2013) researchers at the Institute for Protein Design describe the use of Rosetta computer algorithms to design a protein which binds with high affinity and specificity to a small drug molecule, digoxigenin a dangerous but sometimes life saving cardiac glycoside. Learn more at this link.
-
IPD Researchers Publish New Protocols for Preparing Protein Scaffold Libraries for Functional Site Design
IPD researchers in the Baker group have published new computational protocols for preparing protein scaffold libraries for functional site design. Their paper entitled “A Pareto-optimal refinement method for protein design scaffolds“ improves the search for amino acids with the lowest energy subject to a set of constraints specifying function. Learn more at this link.
-
Centenary Award and Frederick Gowland Hopkins Memorial Lecture
Dr. David Baker, Director of the IPD delivered the Centenary Award and Frederick Gowland Hopkins Memorial Lecture at at the MRC Laboratory of Molecular Biology, Cambridge, UK, on December, 13, 2012. Baker’s lecture entitled “Protein folding, structure prediction and design” can be read at this published link. See: Baker, D. (2014). Protein folding, structure prediction and design.. Biochemical Society…
-
Proteins Made to Order. Researchers at the IPD Design Proteins from Scratch with Predictable Structures
A team from David Baker’s laboratory at the University of Washington in Seattle have described a set of “rules” for the design of proteins from scratch, and have demonstrated the successful design of five new proteins that fold reliably into predicted conformations. Their work was published Nature. Learn more at this link.
-
The IPD Moves Into the New Molecular Engineering and Sciences Building
The Institute for Protein Design and David Baker’s laboratory have moved into the new Molecular Engineering & Sciences Building located in the heart of the University of Washington campus. Read about the Institute’s new home and its exciting research in the Seattle Times, and also at this link.