Tag: Rosetta

A Computationally Designed Metalloprotein Using an Unnatural Amino Acid

Mulligan metal binder figureWhat if scientists could design proteins to capture specific metals from our environment?  The utility for cleaning up metals from waste water, soils, and our bodies could be tremendous.  Dr. Jeremy Mills and collaborators in Dr. Baker’s group at the University of Washington’s Institute for Protein Design (IPD) address this challenge in the first reported use of computational protein design software, Rosetta, to engineer a new metal binding protein (“MB-07”) which incorporates an “unnatural amino acid” (UAA) to achieve very high affinity binding to metal cations.  Learn more at this link.

Computational Protein Design To Improve Detoxification Rates Of Nerve Agents

Phosphotriesterase EngineeringV-type nerve agents are among the most toxic compounds known, and are chemically related to pesticides widespread in the environment. Using an integrated approach, described in an ACS Chemical Biology paper entitled Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries, Dr. Izhack Cherny, Dr. Per Greisen, and collaborators increased the rate of nerve agent detoxification by the enzyme phosphotriesterase (PTE) by 5000-fold by redesigning the active site.   Learn more at this link.